MarkTechPost@AI 2024年07月24日
Google AI Introduces NeuralGCM: A New Machine Learning (ML) based Approach to Simulating Earth’s Atmosphere
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

谷歌AI推出NeuralGCM,一种结合了可微求解器和机器学习参数化的混合模型,旨在解决传统通用环流模型(GCMs)在长期稳定性和准确性方面的局限性。NeuralGCM 能够通过更短的计算时间,提供更稳定和准确的预测,从而实现更准确的长期天气和气候预测。

😁NeuralGCM 是一种混合模型,它结合了可微求解器和机器学习参数化,旨在解决传统通用环流模型 (GCMs) 在长期稳定性和准确性方面的局限性。传统 GCMs 依赖于基于物理的模拟,计算量大,在长期稳定性和准确的集合预测方面存在困难。机器学习模型在短期天气预报方面取得了显著成功,但它们在长期预测和集合精度方面存在不足。

😊NeuralGCM 将可微动力学核心与一个学习物理模块相结合,该模块使用神经网络来预测未解决的大气过程的影响。这种端到端训练方法涉及通过多个模拟步骤进行反向传播,逐渐将展开长度从 6 小时增加到 5 天。这种方法确保模型考虑了学习物理与大尺度动力学之间的相互作用,从而提高了稳定性和准确性。

😮实验结果表明,NeuralGCM 在 1 到 15 天的天气预报中,其准确性与 ECMWF-HRES 和集合预测系统等最佳模型相当,随机版本表现出更低的误差和更好的集合平均预测。在气候模拟中,NeuralGCM 在几十年内准确地跟踪气候指标,并模拟了热带气旋等突发现象,同时显著节省了计算量。

🤩NeuralGCM 通过将可微求解器与机器学习参数化相结合,成功地解决了传统 GCMs 和纯粹的机器学习模型的局限性,为天气和气候预测提供了一种稳定且准确的混合方法。NeuralGCM 增强了理解和预测地球系统所必需的大尺度物理模拟,同时提供显著的计算效率。

🤯这项研究的意义在于,它为克服传统 GCMs 和机器学习模型的局限性提供了新的方法,为更准确、更稳定、更经济高效的天气和气候预测提供了可能。NeuralGCM 的成功也表明了机器学习在解决科学问题中的巨大潜力。

🤩NeuralGCM 的成功也表明了机器学习在解决科学问题中的巨大潜力。

🤩NeuralGCM 的成功也表明了机器学习在解决科学问题中的巨大潜力。

🤩NeuralGCM 的成功也表明了机器学习在解决科学问题中的巨大潜力。

🤩NeuralGCM 的成功也表明了机器学习在解决科学问题中的巨大潜力。

General circulation models (GCMs) form the backbone of weather and climate prediction, leveraging numerical solvers for large-scale dynamics and parameterizations for smaller-scale processes like cloud formation. Despite continuous improvements, GCMs face significant challenges, including persistent errors, biases, and uncertainties in long-term climate projections and extreme weather events. The recent machine-learning (ML) models have remarkably succeeded in short-term weather forecasts. Still, lack stability for long-term predictions and fail to provide calibrated uncertainty estimates, limiting their utility.

GoogleAI proposes NeuralGCM to address the limitations in weather and climate prediction using general circulation models (GCMs). Traditional GCMs, which rely on physics-based simulations, are computationally intensive and struggle with long-term stability and accurate ensemble forecasts. These GCMs combine numerical solvers for large-scale atmospheric dynamics with empirical parameterizations for smaller-scale processes like cloud formation. Machine-learning models, trained on historical data like ECMWF’s ERA5, have demonstrated impressive short-term weather prediction capabilities at lower computational costs but fail in long-term forecasting and ensemble accuracy.

GoogleAI’s NeuralGCM is a hybrid model combining a differentiable solver for atmospheric dynamics with machine-learning components for parameterizing physical processes. This model aims to leverage the strengths of both traditional GCMs and machine-learning approaches, offering stable and accurate forecasts over various timescales with significant computational efficiency.

NeuralGCM integrates a differentiable dynamical core with a learned physics module, which uses a neural network to predict the effects of unresolved atmospheric processes. The end-to-end training approach involves backpropagation through multiple simulation steps, gradually increasing the rollout length from 6 hours to 5 days. This method ensures that the model accounts for interactions between learned physics and large-scale dynamics, enhancing stability and accuracy. 

Experiments were conducted to evaluate the performance of NeuralGCM against best-in-class models like ECMWF-HRES and ensemble prediction systems, as well as machine-learning models like GraphCast and Pangu. For 1- to 15-day weather forecasts, NeuralGCM achieves comparable accuracy, with the stochastic version showing lower error and better ensemble mean predictions. In climate simulations, NeuralGCM accurately tracks climate metrics over multiple decades and simulates emergent phenomena like tropical cyclones, with notable computational savings.

In conclusion, NeuralGCM successfully addresses the limitations of both traditional GCMs and pure machine-learning models, providing a stable and accurate hybrid approach for weather and climate prediction. By combining differentiable solvers with machine-learning parameterizations, NeuralGCM enhances the large-scale physical simulations essential for understanding and predicting the Earth’s system while offering significant computational efficiency.


Check out the Paper and Details. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 47k+ ML SubReddit

Find Upcoming AI Webinars here

The post Google AI Introduces NeuralGCM: A New Machine Learning (ML) based Approach to Simulating Earth’s Atmosphere appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NeuralGCM 机器学习 气候预测 大气模拟 谷歌AI
相关文章