MarkTechPost@AI 2024年07月23日
ProcTag: A Data-Oriented AI Method that Assesses the Efficacy of Document Instruction Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

ProcTag 是一种新颖的数据导向方法,通过评估文档指令执行过程的复杂性和多样性来评估文档指令数据的有效性。与传统的文本导向方法相比,ProcTag 更关注指令的执行过程,从而更准确地评估数据质量。此外,该方法还利用 DocLayPrompt,一种半结构化的布局感知提示策略,通过整合 OCR 和布局检测结果来增强文档表示,提高了模型在文档视觉问答(VQA)任务中的训练效率和性能。

🤔 ProcTag 采用了一种结构化的方式来建模指令执行过程。首先,它使用 DocLayPrompt 来表示文档,该方法整合了 OCR 和布局检测结果,以捕捉结构信息。然后,它利用 GPT-3.5 来生成指令执行的步骤化伪代码,并对这些代码进行标签化,以评估其多样性和复杂性。这些标签用于过滤和选择高质量的数据。

🚀 ProcTag 的实验结果表明,它在评估文档指令数据有效性方面明显优于现有的方法,例如 InsTag 和随机采样。例如,在 DocVQA 数据集中,ProcTag 基于采样的方法仅使用 30.5% 的数据就实现了与使用完整数据集相同的有效性。

💡 ProcTag 通过对文档指令执行过程进行标签化,提供了一种更准确和高效的方法来训练用于文档 VQA 的大型语言模型(LLM)和多模态大型语言模型(MLLM)。该方法的创新性在于它克服了现有文本评估方法的局限性,并通过增强文档表示和数据质量评估来提高模型性能。

💻 ProcTag 的方法可以应用于手动标注的数据集(如 DocVQA)以及从 RVL-CDIP 和 PublayNet 等来源生成的合成数据集。该方法的关键技术方面包括使用非最大抑制来清理输入数据,以及使用聚类算法来聚合相似的标签。

🎯 实验表明,ProcTag 在不同的数据比例和覆盖率下,对 LLM 和 MLLM 的微调都取得了显著的性能提升,尤其是在多样化的数据集上表现出色,证明了其在提高模型性能方面的鲁棒性和效率。

Effectively evaluating document instruction data for training large language models (LLMs) and multimodal large language models (MLLMs) in document visual question answering (VQA) presents a significant challenge. Existing methods are primarily text-oriented, focusing on the textual content of instructions rather than the execution process, which limits their ability to comprehensively assess the quality and efficacy of instruction datasets. This shortcoming impacts the models’ performance in accurately processing complex document data, crucial for applications like automated document analysis and information extraction.

Current methods such as InsTag assess the diversity and complexity of instruction text but fall short in the document VQA domain due to the varied execution processes required by different document types and layouts. These limitations hinder the effective selection and filtering of high-quality instruction data, leading to suboptimal model training outcomes. Additionally, methods like Instruction-Following Difficulty (IFD) require additional model training, adding computational complexity and reducing practicality for real-time applications.

A team of researchers from Alibaba Group and Zhejiang University propose ProcTag, a novel data-oriented method that shifts the focus from instruction text to the execution process of document instructions. By tagging the instruction execution process, ProcTag evaluates the efficacy of instruction datasets based on the diversity and complexity of these tags. This approach enables a more granular and accurate assessment of the data’s quality. Additionally, DocLayPrompt, a semi-structured layout-aware prompting strategy, enhances document representation by incorporating layout information. This innovative approach significantly improves the training efficiency and performance of LLMs and MLLMs in document VQA tasks.

ProcTag employs a structured method to model the instruction execution process. First, it represents documents using DocLayPrompt, which integrates OCR and layout detection results to capture structural information. Next, GPT-3.5 is prompted to generate step-by-step pseudo-code for instruction execution, which is then tagged for diversity and complexity. These tags are used to filter and select high-efficacy data. The method is applied to both manually annotated datasets like DocVQA and generated datasets from sources such as RVL-CDIP and PublayNet. Key technical aspects include the use of non-maximum suppression to clean input data and the application of clustering algorithms to aggregate similar tags.

Comprehensive experimental results demonstrate that ProcTag significantly outperforms existing methods like InsTag and random sampling. Key performance metrics include the average normalized Levenshtein similarity (ANLS) score, where ProcTag-based sampling achieves superior efficacy with only a subset of the data compared to the complete dataset. For example, in the DocVQA dataset, ProcTag-based sampling achieved full efficacy using only 30.5% of the data. The experimental setup involved fine-tuning both LLMs and MLLMs, with consistent improvements observed across different data proportions and coverage rates. The approach proved particularly effective on diverse datasets, confirming its robustness and efficiency in improving model performance.

In conclusion, ProcTag is a novel method for assessing the efficacy of document instruction data through process tagging, and DocLayPrompt is a layout-aware document representation strategy. These innovations address the limitations of existing text-based evaluation methods, offering a more accurate and efficient approach to training LLMs and MLLMs for document VQA. The proposed methods demonstrate significant improvements in data quality assessment and model performance, advancing the field of AI by overcoming a critical challenge in document understanding.


Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter..

Don’t Forget to join our 46k+ ML SubReddit

Find Upcoming AI Webinars here

The post ProcTag: A Data-Oriented AI Method that Assesses the Efficacy of Document Instruction Data appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ProcTag 文档指令数据 大型语言模型 多模态大型语言模型 文档视觉问答
相关文章