The Jim Rutt Show 2024年07月17日
EP 180 Lynne Kiesling on the Electrical Grid
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本期节目中,Jim与电网经济学专家Lynne Kiesling探讨了未来电网架构的演变。他们讨论了电力作为一种商品,从集中控制室向分布式控制的转变,储能技术的重要性,以及峰值负荷和基础负荷之间的平衡。他们还分析了分布式和间歇性能源的整合,电网的数字化,屋顶太阳能系统的协调机制,以及储能技术的最新进展。此外,他们还探讨了网络攻击和太阳耀斑等威胁,以及Transactive Energy Service System (TESS)等新技术在电网管理中的应用。

🤔 **电网的数字化转型:** 电网正在经历数字化转型,这将改变电力生产、分配和消费的方式。数字化电网可以实现更有效的能源管理,提高可靠性和弹性,并促进新的商业模式的出现。数字化技术将使电网能够更好地适应分布式能源资源的整合,并应对不断变化的电力需求。

💡 **储能技术的关键作用:** 储能技术对于实现电网的数字化转型至关重要。储能可以帮助解决间歇性能源资源(如太阳能和风能)的可变性,并提供峰值负荷管理的解决方案。随着储能技术的进步,它将在电网中扮演越来越重要的角色,帮助提高电网的可靠性和效率。

📊 **市场机制和激励措施:** 为了实现电网的数字化转型,需要建立新的市场机制和激励措施,以鼓励参与者(包括消费者、生产者和储能运营商)参与到电网的运行中。这些机制可以包括实时定价、需求响应和能源交易平台,从而优化资源利用,提高能源效率,并降低成本。

🛡️ **应对网络攻击和太阳耀斑:** 随着电网的数字化程度不断提高,网络安全和物理安全问题变得更加突出。网络攻击和太阳耀斑等事件可能对电网造成严重破坏。因此,需要加强电网的网络安全防御和物理安全措施,以确保电网的可靠性和稳定运行。

🤖 **人工智能和机器学习的应用:** 人工智能和机器学习技术可以帮助优化电网的运行和管理。例如,机器学习可以用于预测电力需求、优化能源分配、识别故障和提高能源效率。人工智能和机器学习技术的应用将进一步推动电网的数字化转型,并提升电网的智能化水平。

Jim talks with Lynne Kiesling about the electrical grid and what could and should change in its architecture in the years to come. They discuss electricity as a product, the move away from centralized control rooms, energy storage as the holy grail, base load vs peak load, distributed & intermittent energy resources, moving power to & from the grid, temporal patterns of supply & usage, varying demand to meet supply, programming thermostats, digitization of the electric grid, how rooftop solar systems coordinate with the grid, distributed energy resource management systems, advancements in storage, cyberattacks & solar flares, the Transactive Energy Service System (TESS), machine learning in energy bidding, the challenge of testing complex systems, the Olympic Peninsula Testbed Project, responding to events like the Great Texas Freeze of 2021, institutional design in a new technological landscape, wholesale power generation, power law distributions, and much more. Episode Transcript Transactive Energy Service System (TESS) JRS EP90 - Joshua Epstein on Agent-Based ModelingLynne Kiesling is an economist focusing on regulation, market design, and the economics of digitization and smart grid technologies in the electricity industry. She is a Research Professor in the School of Engineering, Design and Computing at the University of Colorado-Denver, and Co-Director of the Institute for Regulatory Law & Economics. Lynne also provides advisory and analytical services as the President of Knowledge Problem LLC, and is an Adjunct Professor in the Masters of Science in Energy and Sustainability program at Northwestern University. In addition to her academic research, she is currently a member of the U.S. Department of Energy's Electricity Advisory Committee, has served as a member of the National Institute of Standards and Technology's Smart Grid Advisory Committee, and is an emerita member of the GridWise Architecture Council. Her academic background includes a B.S. in Economics from Miami University (Ohio) and a Ph.D. in Economics from Northwestern University.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电网 数字化 储能 人工智能 能源管理
相关文章