The Jim Rutt Show 2024年07月17日
EP 192 David Krakauer on Science, Complexity and AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了人工智能(AI)对科学发展的影响,以及数据驱动科学与理论驱动科学之间的关系,并深入分析了机器学习科学中的复杂性结构。文章还探讨了AI如何重塑科学发现、模型构建和科学理论的发展,并对AI带来的潜在风险进行了思考。

🤔 数据驱动科学与理论驱动科学的对比:文章指出,传统科学以理论驱动为主,而AI的兴起则带来了数据驱动科学的浪潮。AI可以通过分析大量数据,发现隐藏的模式和规律,进而提出新的科学理论。数据驱动科学与理论驱动科学的结合,将推动科学的快速发展。

🧠 AI在科学发现中的作用:文章探讨了AI在科学发现中的应用,例如蛋白质折叠问题。AI可以通过暴力破解方法,快速筛选出最佳的蛋白质结构。这表明,AI可以成为科学家进行科学发现的强大工具,帮助他们解决复杂问题。

🤯 AI带来的潜在风险:文章也探讨了AI带来的潜在风险。例如,AI模型可能出现偏差,导致错误的结论。此外,AI的快速发展也可能导致人类对科学的理解出现偏差,甚至出现“智力倒退”的风险。

💡 未来科学发展的方向:文章认为,AI将引领科学研究的全新方向。例如,AI可以帮助科学家构建更复杂的模型,并从海量数据中提取有用的信息。AI也将推动新的科学领域的诞生,例如AI伦理学、AI社会学等。

🧬 人类与AI的协同进化:文章强调,人类和AI应该相互协作,共同推动科学的发展。人类应该利用AI的优势,解决科学难题,同时也要关注AI带来的潜在风险,确保AI的发展符合人类的利益。

Jim has a wide-ranging talk with David Krakauer about the ideas in his forthcoming paper "The Structure of Complexity in Machine Learning Science" and how AI may alter the course of science. They discuss data-driven science vs theory-driven science, a bifurcation in science, the protein folding problem, brute force methods, the origin of induction in David Hume, the origin of neural networks in deductive thinking of the '40s, super-Humean models, crossing the statistical uncanny valley, ultra-high-dimensionality, adaptive computation, why genetic algorithms might come back, Chomsky's poverty of the stimulus, the lottery ticket hypothesis, neural nets as pre-processors for parsimonious science, how human expertise constrains model-building, GPT-4's arithmetic problem, cognitive synergy, why LLMs aren't AGIs, incompressible representations, gravitational lensing, the new sciences LLMs will lead to, encoding adaptive history, Jim's ScriptWriter software, discovery engines vs libraries vs synthesizers, the history of science as a history of constraint, Occam's razor & meta-Occam, assembly theory, whether existential risk is a marketing ploy, the Idiocracy risk, using empirical precedent in tech regulation, networks of info agents, the outsourcing of human judgment, and much more. Episode Transcript JRS EP10 - David Krakauer: Complexity Science Darwin's Dangerous Idea: Evolution and the Meanings of Life, by Daniel Dennett JRS Currents 100: Sara Walker and Lee Cronin on Time as an ObjectDavid Krakauer's research explores the evolution of intelligence and stupidity on Earth. This includes studying the evolution of genetic, neural, linguistic, social, and cultural mechanisms supporting memory and information processing, and exploring their shared properties. President of the Santa Fe Institute since 2015, he served previously as the founding director of the Wisconsin Institutes for Discovery, the co-director of the Center for Complexity and Collective Computation, and professor of mathematical genetics, all at the University of Wisconsin, Madison.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

人工智能 科学 机器学习 复杂性 数据驱动
相关文章