Clearer Thinking with Spencer Greenberg 2024年07月17日
Why it's so hard to have confidence that charities are doing good (with Elie Hassenfeld)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

GiveWell是一个非营利组织,致力于通过数据驱动的方法来找到最有效的慈善机构。他们通过严格的研究和评估,筛选出那些在解决全球健康和贫困问题方面具有最大影响力的慈善机构。GiveWell的独特之处在于他们对慈善捐赠的科学方法,他们利用成本效益分析和预期价值理论来衡量慈善机构的效率,并根据这些数据推荐最值得支持的机构。

🤔 GiveWell采用了一种数据驱动的方法来评估慈善机构的效率,他们通过严格的研究和评估,筛选出那些在解决全球健康和贫困问题方面具有最大影响力的慈善机构。GiveWell的独特之处在于他们对慈善捐赠的科学方法,他们利用成本效益分析和预期价值理论来衡量慈善机构的效率,并根据这些数据推荐最值得支持的机构。

💪 GiveWell的推荐清单非常精简,只包含少数几个被认为具有最高影响力的慈善机构。这是因为GiveWell认为,在有限的资源下,将资金集中在那些能够产生最大影响的机构,比分散投资到许多效率较低的机构更有效。

⚖️ GiveWell在评估慈善机构时,会考虑不同的道德框架,并尝试将不同的价值观纳入他们的分析。例如,他们会考虑不同类型的福利,包括健康、教育、贫困等,并根据不同的道德理论来权衡这些价值观的相对重要性。

📈 GiveWell在近些年增加了对健康相关项目的偏好,这是因为他们认为在解决全球健康问题方面,投资回报率更高。例如,他们在疟疾防治项目中投入了大量资金,因为该项目具有很高的成本效益比,能够以相对较低的成本挽救大量的生命。

🤔 GiveWell在评估慈善机构时,会将预期价值理论应用于实际的道德直觉。他们会考虑不同项目的成本效益比,并根据这些数据来预测项目的预期价值。他们也会考虑人们的道德直觉,例如,人们可能更倾向于支持那些能够直接帮助个人的项目,即使这些项目的成本效益比可能没有那么高。

🧐 GiveWell在评估慈善机构时,会考虑项目的预期价值,并根据这些数据来预测项目的实际影响。然而,他们也承认,在评估慈善机构的影响时,存在着很大的不确定性。因此,他们会根据不同的信息来源来评估项目的预期价值,并根据这些信息来确定他们的推荐清单。

💡 GiveWell建议,在捐赠时,应该尽量选择那些具有较高影响力的慈善机构。即使这些机构的预期价值可能没有那么高,但他们能够产生最大的积极影响。

💡 GiveWell建议,在捐赠时,应该尽量选择那些具有较高影响力的慈善机构。即使这些机构的预期价值可能没有那么高,但他们能够产生最大的积极影响。

🤔 GiveWell认为,在评估慈善机构的影响时,应该考虑二阶效应。例如,一个项目可能能够直接改善人们的生活,但同时也会产生一些负面的二阶效应,例如,可能导致环境污染或社会不公。因此,在评估慈善机构时,应该全面地考虑项目的预期价值,包括其潜在的二阶效应。

🤔 GiveWell认为,在评估慈善机构的影响时,应该考虑二阶效应。例如,一个项目可能能够直接改善人们的生活,但同时也会产生一些负面的二阶效应,例如,可能导致环境污染或社会不公。因此,在评估慈善机构时,应该全面地考虑项目的预期价值,包括其潜在的二阶效应。

🤔 GiveWell认为,在评估慈善机构的影响时,应该考虑二阶效应。例如,一个项目可能能够直接改善人们的生活,但同时也会产生一些负面的二阶效应,例如,可能导致环境污染或社会不公。因此,在评估慈善机构时,应该全面地考虑项目的预期价值,包括其潜在的二阶效应。

Read the full transcript here.

How does GiveWell's approach to charity differ from other charitable organizations? Why does GiveWell list such a small number of recommended charities? How does GiveWell handle the fact that different moral frameworks measure causes differently? Why has GiveWell increased its preference for health-related causes over time? How does GiveWell weight QALYs and DALYs? How much does GiveWell rely on a priori moral philosophy versus people's actual moral intuitions? Why does GiveWell have such low levels of confidence in some of its most highly-recommended charities or interventions? What should someone do if they want to be more confident that their giving is actually having a positive impact? Why do expected values usually tend to drop as more information is gathered? How does GiveWell think about second-order effects? How much good does the median charity do? Why is it so hard to determine how impactful charities are? Many charities report on the effectiveness of individual projects, but why don't more of them report on their effectiveness overall as an organization? Venture capitalists often diversify their portfolios as much as possible because they know that, even though most startups will fail, one unicorn can repay their investments many times over; so, in a similar way, why doesn't GiveWell fund as many projects as possible rather than focusing on a few high performers? Why doesn't GiveWell recommend more animal charities? Does quantification sometimes go too far?

Elie Hassenfeld co-founded GiveWell in 2007 and currently serves as its CEO. He is responsible for setting GiveWell's strategic vision and has grown the organization into a leading funder in global health and poverty alleviation, directing over $500 million annually to high-impact giving opportunities. Since 2007, GiveWell has directed more than $1 billion to outstanding charities. Elie co-led the development of GiveWell's research methodology and guides the research team's agenda. He has also worked closely with donors to help them define their giving strategies and invest toward them. Prior to founding GiveWell, Elie worked in the hedge fund industry. He graduated from Columbia University in 2004 with a B.A. in religion.

Staff

Music

Affiliates

[Read more]

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

慈善 GiveWell 数据驱动 有效性 全球健康 贫困
相关文章