cs.AI updates on arXiv.org 13小时前
Deep Learning Model for Amyloidogenicity Prediction using a Pre-trained Protein LLM
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文研究了基于预训练蛋白质大语言模型,利用双向LSTM和GRU预测淀粉样变性区域,方法在10折交叉验证和测试数据集上分别达到84.5%和83%的准确率,展示了LLM在提高淀粉样预测准确率方面的潜力。

arXiv:2508.12575v1 Announce Type: cross Abstract: The prediction of amyloidogenicity in peptides and proteins remains a focal point of ongoing bioinformatics. The crucial step in this field is to apply advanced computational methodologies. Many recent approaches to predicting amyloidogenicity within proteins are highly based on evolutionary motifs and the individual properties of amino acids. It is becoming increasingly evident that the sequence information-based features show high predictive performance. Consequently, our study evaluated the contextual features of protein sequences obtained from a pretrained protein large language model leveraging bidirectional LSTM and GRU to predict amyloidogenic regions in peptide and protein sequences. Our method achieved an accuracy of 84.5% on 10-fold cross-validation and an accuracy of 83% in the test dataset. Our results demonstrate competitive performance, highlighting the potential of LLMs in enhancing the accuracy of amyloid prediction.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 淀粉样变性 蛋白质预测 LSTM GRU
相关文章