cs.AI updates on arXiv.org 13小时前
Synthetic Data is Sufficient for Zero-Shot Visual Generalization from Offline Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种通过生成额外合成训练数据来解决离线强化学习泛化问题的方法,通过数据增强和扩散模型提升模型泛化能力,有效减少测试时的泛化差距。

arXiv:2508.12356v1 Announce Type: cross Abstract: Offline reinforcement learning (RL) offers a promising framework for training agents using pre-collected datasets without the need for further environment interaction. However, policies trained on offline data often struggle to generalise due to limited exposure to diverse states. The complexity of visual data introduces additional challenges such as noise, distractions, and spurious correlations, which can misguide the policy and increase the risk of overfitting if the training data is not sufficiently diverse. Indeed, this makes it challenging to leverage vision-based offline data in training robust agents that can generalize to unseen environments. To solve this problem, we propose a simple approach generating additional synthetic training data. We propose a two-step process, first augmenting the originally collected offline data to improve zero-shot generalization by introducing diversity, then using a diffusion model to generate additional data in latent space. We test our method across both continuous action spaces (Visual D4RL) and discrete action spaces (Procgen), demonstrating that it significantly improves generalization without requiring any algorithmic changes to existing model-free offline RL methods. We show that our method not only increases the diversity of the training data but also significantly reduces the generalization gap at test time while maintaining computational efficiency. We believe this approach could fuel additional progress in generating synthetic data to train more general agents in the future.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

离线强化学习 合成数据 泛化能力 数据增强 扩散模型
相关文章