cs.AI updates on arXiv.org 13小时前
Exploring Multimodal AI Reasoning for Meteorological Forecasting from Skew-T Diagrams
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出一种轻量级AI助手,通过视觉语言模型和训练的视觉推理,实现Skew-T图的解释,为气象预报提供高效支持。

arXiv:2508.12198v1 Announce Type: cross Abstract: Forecasting from atmospheric soundings is a fundamental task in operational meteorology, often requiring structured visual reasoning over Skew-T log-P diagrams by human forecasters. While recent advances in Vision-Language Models (VLMs) have shown promise in other scientific domains, their application to meteorological diagram interpretation remains largely unexplored. In this study, we present a lightweight AI assistant that interprets Skew-T diagrams using a small language model (LM) and a small VLM fine-tuned to emulate human forecasters. Using a curriculum learning framework, we first train the models to identify key atmospheric features from diagrams through visual question answering, followed by chain-of-thought reasoning tasks that estimate precipitation probability based on the derived visual groundings. Model inputs include either textual summaries or generated Skew-T diagrams derived from operational Numerical Weather Prediction (NWP) forecasts, paired with three-hour precipitation observations from South Korea's Auto Weather Stations network. Evaluation results demonstrate that the fine-tuned VLM achieves skill comparable to an operational NWP model, despite relying solely on static atmospheric profiles. Ablation studies reveal that visual grounding and reasoning supervision are critical for performance, while attention map analysis confirms that the model learns to focus on relevant meteorological features. These findings highlight the potential of compact, interpretable multimodal models to support weather forecasting tasks. The approach offers a computationally efficient alternative to large-scale systems, and future work could extend it to more complex applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI助手 气象预报 视觉语言模型
相关文章