cs.AI updates on arXiv.org 13小时前
Demystifying Foreground-Background Memorization in Diffusion Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为FB-Mem的分割度量方法,用于量化生成图像中记忆区域,揭示扩散模型记忆的复杂模式,并指出现有缓解方法的不充分性。

arXiv:2508.12148v1 Announce Type: cross Abstract: Diffusion models (DMs) memorize training images and can reproduce near-duplicates during generation. Current detection methods identify verbatim memorization but fail to capture two critical aspects: quantifying partial memorization occurring in small image regions, and memorization patterns beyond specific prompt-image pairs. To address these limitations, we propose Foreground Background Memorization (FB-Mem), a novel segmentation-based metric that classifies and quantifies memorized regions within generated images. Our method reveals that memorization is more pervasive than previously understood: (1) individual generations from single prompts may be linked to clusters of similar training images, revealing complex memorization patterns that extend beyond one-to-one correspondences; and (2) existing model-level mitigation methods, such as neuron deactivation and pruning, fail to eliminate local memorization, which persists particularly in foreground regions. Our work establishes an effective framework for measuring memorization in diffusion models, demonstrates the inadequacy of current mitigation approaches, and proposes a stronger mitigation method using a clustering approach.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

扩散模型 记忆量化 缓解策略 FB-Mem 图像记忆
相关文章