cs.AI updates on arXiv.org 13小时前
Generic Event Boundary Detection via Denoising Diffusion
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为DiffGEBD的基于扩散模型的视频事件边界检测方法,通过编码相邻帧的相关变化,迭代解码随机噪声,实现生成式事件边界检测,并引入新评估指标,实验结果表明该方法在标准基准上表现优异。

arXiv:2508.12084v1 Announce Type: cross Abstract: Generic event boundary detection (GEBD) aims to identify natural boundaries in a video, segmenting it into distinct and meaningful chunks. Despite the inherent subjectivity of event boundaries, previous methods have focused on deterministic predictions, overlooking the diversity of plausible solutions. In this paper, we introduce a novel diffusion-based boundary detection model, dubbed DiffGEBD, that tackles the problem of GEBD from a generative perspective. The proposed model encodes relevant changes across adjacent frames via temporal self-similarity and then iteratively decodes random noise into plausible event boundaries being conditioned on the encoded features. Classifier-free guidance allows the degree of diversity to be controlled in denoising diffusion. In addition, we introduce a new evaluation metric to assess the quality of predictions considering both diversity and fidelity. Experiments show that our method achieves strong performance on two standard benchmarks, Kinetics-GEBD and TAPOS, generating diverse and plausible event boundaries.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

事件边界检测 视频分析 扩散模型
相关文章