cs.AI updates on arXiv.org 13小时前
Generalized invariants meet constitutive neural networks: A novel framework for hyperelastic materials
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种新的数据驱动框架,用于发现适用于各向同性不可压缩超弹性材料的恰当不变量和本构模型,提高预测精度和可解释性。

arXiv:2508.12063v1 Announce Type: cross Abstract: The major challenge in determining a hyperelastic model for a given material is the choice of invariants and the selection how the strain energy function depends functionally on these invariants. Here we introduce a new data-driven framework that simultaneously discovers appropriate invariants and constitutive models for isotropic incompressible hyperelastic materials. Our approach identifies both the most suitable invariants in a class of generalized invariants and the corresponding strain energy function directly from experimental observations. Unlike previous methods that rely on fixed invariant choices or sequential fitting procedures, our method integrates the discovery process into a single neural network architecture. By looking at a continuous family of possible invariants, the model can flexibly adapt to different material behaviors. We demonstrate the effectiveness of this approach using popular benchmark datasets for rubber and brain tissue. For rubber, the method recovers a stretch-dominated formulation consistent with classical models. For brain tissue, it identifies a formulation sensitive to small stretches, capturing the nonlinear shear response characteristic of soft biological matter. Compared to traditional and neural-network-based models, our framework provides improved predictive accuracy and interpretability across a wide range of deformation states. This unified strategy offers a robust tool for automated and physically meaningful model discovery in hyperelasticity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据驱动 超弹性模型 神经网络
相关文章