cs.AI updates on arXiv.org 13小时前
TBGRecall: A Generative Retrieval Model for E-commerce Recommendation Scenarios
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出TBGRecall框架,通过Next Session Prediction和优化训练方法,有效提升电商推荐系统的检索性能,实验证明其在公开基准和工业数据集上优于现有方法。

arXiv:2508.11977v1 Announce Type: cross Abstract: Recommendation systems are essential tools in modern e-commerce, facilitating personalized user experiences by suggesting relevant products. Recent advancements in generative models have demonstrated potential in enhancing recommendation systems; however, these models often exhibit limitations in optimizing retrieval tasks, primarily due to their reliance on autoregressive generation mechanisms. Conventional approaches introduce sequential dependencies that impede efficient retrieval, as they are inherently unsuitable for generating multiple items without positional constraints within a single request session. To address these limitations, we propose TBGRecall, a framework integrating Next Session Prediction (NSP), designed to enhance generative retrieval models for e-commerce applications. Our framework reformulation involves partitioning input samples into multi-session sequences, where each sequence comprises a session token followed by a set of item tokens, and then further incorporate multiple optimizations tailored to the generative task in retrieval scenarios. In terms of training methodology, our pipeline integrates limited historical data pre-training with stochastic partial incremental training, significantly improving training efficiency and emphasizing the superiority of data recency over sheer data volume. Our extensive experiments, conducted on public benchmarks alongside a large-scale industrial dataset from TaoBao, show TBGRecall outperforms the state-of-the-art recommendation methods, and exhibits a clear scaling law trend. Ultimately, NSP represents a significant advancement in the effectiveness of generative recommendation systems for e-commerce applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

推荐系统 电商应用 TBGRecall Next Session Prediction 优化训练
相关文章