arXiv:2508.13047v1 Announce Type: cross Abstract: We analyzed 83 persona prompts from 27 research articles that used large language models (LLMs) to generate user personas. Findings show that the prompts predominantly generate single personas. Several prompts express a desire for short or concise persona descriptions, which deviates from the tradition of creating rich, informative, and rounded persona profiles. Text is the most common format for generated persona attributes, followed by numbers. Text and numbers are often generated together, and demographic attributes are included in nearly all generated personas. Researchers use up to 12 prompts in a single study, though most research uses a small number of prompts. Comparison and testing multiple LLMs is rare. More than half of the prompts require the persona output in a structured format, such as JSON, and 74% of the prompts insert data or dynamic variables. We discuss the implications of increased use of computational personas for user representation.