arXiv:2508.11921v1 Announce Type: cross Abstract: Efficient modeling of long sequences of high-order data requires a more efficient architecture than Transformer. In this paper, we investigate two key aspects of extending linear recurrent models, especially those originally designed for language modeling, to high-order data (1D to ND): scanning strategies and attention-hybrid architectures. Empirical results suggest that scanning provides limited benefits, while attention-hybrid models yield promising results. Focusing on the latter, we further evaluate types of attention and find that tiled high-order sliding window attention (SWA) is efficient in both theory and practice. We term the resulting hybrid architecture of linear recurrence and high-order SWA as Efficient N-dimensional Attention (ENA). We then conduct several experiments to demonstrate its effectiveness. The intuition behind ENA is that linear recurrence compresses global information into a state, while SWA complements it by enforcing strict local modeling. Together, they form a simple framework that offers a promising and practical solution for ultra-long high-order data modeling.