cs.AI updates on arXiv.org 13小时前
Integrating Symbolic RL Planning into a BDI-based Autonomous UAV Framework: System Integration and SIL Validation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出AMAD-SRL框架,结合符号强化学习,提高无人机动态任务规划与执行能力,通过SIL环境验证,实现高效目标识别与路径规划。

arXiv:2508.11890v1 Announce Type: cross Abstract: Modern autonomous drone missions increasingly require software frameworks capable of seamlessly integrating structured symbolic planning with adaptive reinforcement learning (RL). Although traditional rule-based architectures offer robust structured reasoning for drone autonomy, their capabilities fall short in dynamically complex operational environments that require adaptive symbolic planning. Symbolic RL (SRL), using the Planning Domain Definition Language (PDDL), explicitly integrates domain-specific knowledge and operational constraints, significantly improving the reliability and safety of unmanned aerial vehicle (UAV) decision making. In this study, we propose the AMAD-SRL framework, an extended and refined version of the Autonomous Mission Agents for Drones (AMAD) cognitive multi-agent architecture, enhanced with symbolic reinforcement learning for dynamic mission planning and execution. We validated our framework in a Software-in-the-Loop (SIL) environment structured identically to an intended Hardware-In-the-Loop Simulation (HILS) platform, ensuring seamless transition to real hardware. Experimental results demonstrate stable integration and interoperability of modules, successful transitions between BDI-driven and symbolic RL-driven planning phases, and consistent mission performance. Specifically, we evaluate a target acquisition scenario in which the UAV plans a surveillance path followed by a dynamic reentry path to secure the target while avoiding threat zones. In this SIL evaluation, mission efficiency improved by approximately 75% over a coverage-based baseline, measured by travel distance reduction. This study establishes a robust foundation for handling complex UAV missions and discusses directions for further enhancement and validation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无人机 符号强化学习 任务规划
相关文章