cs.AI updates on arXiv.org 13小时前
Discovering Expert-Level Nash Equilibrium Algorithms with Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了LegoNE框架,该框架将算法设计与形式分析紧密融合,通过自动翻译算法为约束优化问题,实现算法性能保证的自动发现与证明,展示了人机协作在理论科学领域的新范式。

arXiv:2508.11874v1 Announce Type: cross Abstract: Algorithm design and analysis is a cornerstone of computer science, but it confronts a major challenge. Proving an algorithm's performance guarantee across all inputs has traditionally required extensive and often error-prone human effort. While AI has shown great success in finding solutions to specific problem instances, automating the discovery of general algorithms with such provable guarantees has remained a significant barrier. This challenge stems from the difficulty of integrating the creative process of algorithm design with the rigorous process of formal analysis. To address this gap, we propose LegoNE, a framework that tightly fuses these two processes for the fundamental and notoriously difficult problem of computing approximate Nash equilibria. LegoNE automatically translates any algorithm written by a simple Python-like language into a constrained optimization problem. Solving this problem derives and proves the algorithm's approximation bound. Using LegoNE, a state-of-the-art large language model rediscovered the state-of-the-art algorithm for two-player games within hours, a feat that had taken human researchers 15 years to achieve. For three-player games, the model discovered a novel algorithm surpassing all existing human-designed ones. This work demonstrates a new human-machine collaborative paradigm for theoretical science: humans reason at a higher-abstract level, using symbols to compress the search space, and AI explores within it, achieving what neither could alone.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

算法设计 AI应用 人机协作
相关文章