arXiv:2508.12755v1 Announce Type: cross Abstract: Computer vision models can be used to assist during mechanical thrombectomy (MT) for acute ischemic stroke (AIS), but poor image quality often degrades performance. This work presents CLAIRE-DSA, a deep learning--based framework designed to categorize key image properties in minimum intensity projections (MinIPs) acquired during MT for AIS, supporting downstream quality control and workflow optimization. CLAIRE-DSA uses pre-trained ResNet backbone models, fine-tuned to predict nine image properties (e.g., presence of contrast, projection angle, motion artefact severity). Separate classifiers were trained on an annotated dataset containing $1,758$ fluoroscopic MinIPs. The model achieved excellent performance on all labels, with ROC-AUC ranging from $0.91$ to $0.98$, and precision ranging from $0.70$ to $1.00$. The ability of CLAIRE-DSA to identify suitable images was evaluated on a segmentation task by filtering poor quality images and comparing segmentation performance on filtered and unfiltered datasets. Segmentation success rate increased from $42%$ to $69%$, $p