cs.AI updates on arXiv.org 16小时前
TTA-DAME: Test-Time Adaptation with Domain Augmentation and Model Ensemble for Dynamic Driving Conditions
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为TTA-DAME的实时域适应方法,通过源域数据增强和领域判别器提高模型在动态环境下的适应能力,特别是在夜间场景中,通过训练多个检测器并使用NMS优化预测,在SHIFT基准测试中显著提升性能。

arXiv:2508.12690v1 Announce Type: cross Abstract: Test-time Adaptation (TTA) poses a challenge, requiring models to dynamically adapt and perform optimally on shifting target domains. This task is particularly emphasized in real-world driving scenes, where weather domain shifts occur frequently. To address such dynamic changes, our proposed method, TTA-DAME, leverages source domain data augmentation into target domains. Additionally, we introduce a domain discriminator and a specialized domain detector to mitigate drastic domain shifts, especially from daytime to nighttime conditions. To further improve adaptability, we train multiple detectors and consolidate their predictions through Non-Maximum Suppression (NMS). Our empirical validation demonstrates the effectiveness of our method, showing significant performance enhancements on the SHIFT Benchmark.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

实时域适应 TTA-DAME 驾驶场景 模型适应 SHIFT基准
相关文章