cs.AI updates on arXiv.org 13小时前
FairTabGen: Unifying Counterfactual and Causal Fairness in Synthetic Tabular Data Generation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出FairTabGen,一种基于大型语言模型的表格数据生成框架,旨在解决隐私敏感、数据稀缺环境下的数据生成问题,通过多种公平性定义和优化策略,实现公平性与高效率的平衡。

arXiv:2508.11810v1 Announce Type: cross Abstract: Generating synthetic data is crucial in privacy-sensitive, data-scarce settings, especially for tabular datasets widely used in real-world applications. A key challenge is improving counterfactual and causal fairness, while preserving high utility. We present FairTabGen, a fairness-aware large language model-based framework for tabular synthetic data generation. We integrate multiple fairness definitions including counterfactual and causal fairness into both its generation and evaluation pipelines. We use in-context learning, prompt refinement, and fairness-aware data curation to balance fairness and utility. Across diverse datasets, our method outperforms state-of-the-art GAN-based and LLM-based methods, achieving up to 10% improvements on fairness metrics such as demographic parity and path-specific causal effects while retaining statistical utility. Remarkably, it achieves these gains using less than 20% of the original data, highlighting its efficiency in low-data regimes. These results demonstrate a principled and practical approach for generating fair and useful synthetic tabular data.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

数据生成 公平性 表格数据 大型语言模型 数据公平性
相关文章