arXiv:2508.11692v1 Announce Type: cross Abstract: The Point Machine (PM) is a critical piece of railway equipment that switches train routes by diverting tracks through a switchblade. As with any critical safety equipment, a failure will halt operations leading to service disruptions; therefore, pre-emptive maintenance may avoid unnecessary interruptions by detecting anomalies before they become failures. Previous work relies on several inputs and crafting custom features by segmenting the signal. This not only adds additional requirements for data collection and processing, but it is also specific to the PM technology, the installed locations and operational conditions limiting scalability. Based on the available maintenance records, the main failure causes for PM are obstacles, friction, power source issues and misalignment. Those failures affect the energy consumption pattern of PMs, altering the usual (or healthy) shape of the power signal during the PM movement. In contrast to the current state-of-the-art, our method requires only one input. We apply a deep learning model to the power signal pattern to classify if the PM is nominal or associated with any failure type, achieving >99.99\% precision,