cs.AI updates on arXiv.org 13小时前
Scalable, Technology-Agnostic Diagnosis and Predictive Maintenance for Point Machine using Deep Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度学习的铁路点机(PM)故障检测方法,通过分析PM运行中的电源信号模式,实现对故障类型的精准分类,有效提高铁路运营安全。

arXiv:2508.11692v1 Announce Type: cross Abstract: The Point Machine (PM) is a critical piece of railway equipment that switches train routes by diverting tracks through a switchblade. As with any critical safety equipment, a failure will halt operations leading to service disruptions; therefore, pre-emptive maintenance may avoid unnecessary interruptions by detecting anomalies before they become failures. Previous work relies on several inputs and crafting custom features by segmenting the signal. This not only adds additional requirements for data collection and processing, but it is also specific to the PM technology, the installed locations and operational conditions limiting scalability. Based on the available maintenance records, the main failure causes for PM are obstacles, friction, power source issues and misalignment. Those failures affect the energy consumption pattern of PMs, altering the usual (or healthy) shape of the power signal during the PM movement. In contrast to the current state-of-the-art, our method requires only one input. We apply a deep learning model to the power signal pattern to classify if the PM is nominal or associated with any failure type, achieving >99.99\% precision,

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

铁路设备 故障检测 深度学习 电源信号 PM
相关文章