arXiv:2508.11690v1 Announce Type: cross Abstract: Child safety continues to be a paramount concern worldwide, with child abduction posing significant threats to communities. This paper presents the development of an edge-based child abduction detection and alert system utilizing a multi-agent framework where each agent incorporates Vision-Language Models (VLMs) deployed on a Raspberry Pi. Leveraging the advanced capabilities of VLMs within individual agents of a multi-agent team, our system is trained to accurately detect and interpret complex interactions involving children in various environments in real-time. The multi-agent system is deployed on a Raspberry Pi connected to a webcam, forming an edge device capable of processing video feeds, thereby reducing latency and enhancing privacy. An integrated alert system utilizes the Twilio API to send immediate SMS and WhatsApp notifications, including calls and messages, when a potential child abduction event is detected. Experimental results demonstrate that the system achieves high accuracy in detecting potential abduction scenarios, with near real-time performance suitable for practical deployment. The multi-agent architecture enhances the system's ability to process complex situational data, improving detection capabilities over traditional single-model approaches. The edge deployment ensures scalability and cost-effectiveness, making it accessible for widespread use. The proposed system offers a proactive solution to enhance child safety through continuous monitoring and rapid alerting, contributing a valuable tool in efforts to prevent child abductions.