cs.AI updates on arXiv.org 13小时前
Deep Language Geometry: Constructing a Metric Space from LLM Weights
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用现代大型语言模型内部权重激活构建语言度量空间的新框架,通过自适应剪枝算法计算权重重要性得分,自动生成高维向量表示,揭示语言现象,验证了方法在多语言LLMs和106种语言数据集上的有效性。

arXiv:2508.11676v1 Announce Type: cross Abstract: We introduce a novel framework that utilizes the internal weight activations of modern Large Language Models (LLMs) to construct a metric space of languages. Unlike traditional approaches based on hand-crafted linguistic features, our method automatically derives high-dimensional vector representations by computing weight importance scores via an adapted pruning algorithm. Our approach captures intrinsic language characteristics that reflect linguistic phenomena. We validate our approach across diverse datasets and multilingual LLMs, covering 106 languages. The results align well with established linguistic families while also revealing unexpected inter-language connections that may indicate historical contact or language evolution. The source code, computed language latent vectors, and visualization tool are made publicly available at https://github.com/mshamrai/deep-language-geometry.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 语言度量空间 语言现象
相关文章