cs.AI updates on arXiv.org 13小时前
Toward Storage-Aware Learning with Compressed Data An Empirical Exploratory Study on JPEG
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文对设备端机器学习的存储限制进行实证研究,提出针对数据压缩与质量平衡的优化策略,揭示了数据样本对压缩敏感度的差异,为新型存储感知学习系统提供理论支持。

arXiv:2508.12833v1 Announce Type: cross Abstract: On-device machine learning is often constrained by limited storage, particularly in continuous data collection scenarios. This paper presents an empirical study on storage-aware learning, focusing on the trade-off between data quantity and quality via compression. We demonstrate that naive strategies, such as uniform data dropping or one-size-fits-all compression, are suboptimal. Our findings further reveal that data samples exhibit varying sensitivities to compression, supporting the feasibility of a sample-wise adaptive compression strategy. These insights provide a foundation for developing a new class of storage-aware learning systems. The primary contribution of this work is the systematic characterization of this under-explored challenge, offering valuable insights that advance the understanding of storage-aware learning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

存储感知学习 数据压缩 机器学习
相关文章