cs.AI updates on arXiv.org 13小时前
Vibe2Spike: Batteryless Wireless Tags for Vibration Sensing with Event Cameras and Spiking Networks
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为Vibe2Spike的新型无电池无线传感框架,利用可见光通信和脉冲神经网络实现基于振动的活动识别。该系统使用超低成本标签,无需电池或射频无线电,通过事件相机捕捉光脉冲并使用优化后的SNN模型进行分类,实现了智能环境的电池无依赖解决方案。

arXiv:2508.11640v1 Announce Type: cross Abstract: The deployment of dense, low-cost sensors is critical for realizing ubiquitous smart environments. However, existing sensing solutions struggle with the energy, scalability, and reliability trade-offs imposed by battery maintenance, wireless transmission overhead, and data processing complexity. In this work, we present Vibe2Spike, a novel battery-free, wireless sensing framework that enables vibration-based activity recognition using visible light communication (VLC) and spiking neural networks (SNNs). Our system uses ultra-low-cost tags composed only of a piezoelectric disc, a Zener diode, and an LED, which harvest vibration energy and emit sparse visible light spikes without requiring batteries or RF radios. These optical spikes are captured by event cameras and classified using optimized SNN models evolved via the EONS framework. We evaluate Vibe2Spike across five device classes, achieving 94.9\% average classification fitness while analyzing the latency-accuracy trade-offs of different temporal binning strategies. Vibe2Spike demonstrates a scalable, and energy-efficient approach for enabling intelligent environments in a batteryless manner.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

无电池传感 可见光通信 脉冲神经网络 振动识别 智能环境
相关文章