cs.AI updates on arXiv.org 13小时前
Bayesian Optimization-based Search for Agent Control in Automated Game Testing
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种利用游戏角色代理进行自动测试的方法,通过贝叶斯优化执行高效搜索,并构建游戏测试专用模型,显著提升关卡覆盖能力和时间效率。

arXiv:2508.13121v1 Announce Type: new Abstract: This work introduces an automated testing approach that employs agents controlling game characters to detect potential bugs within a game level. Harnessing the power of Bayesian Optimization (BO) to execute sample-efficient search, the method determines the next sampling point by analyzing the data collected so far and calculates the data point that will maximize information acquisition. To support the BO process, we introduce a game testing-specific model built on top of a grid map, that features the smoothness and uncertainty estimation required by BO, however and most importantly, it does not suffer the scalability issues that traditional models carry. The experiments demonstrate that the approach significantly improves map coverage capabilities in both time efficiency and exploration distribution.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

游戏测试 自动测试 贝叶斯优化
相关文章