cs.AI updates on arXiv.org 13小时前
ToolACE-MT: Non-Autoregressive Generation for Agentic Multi-Turn Interaction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ToolACE-MT框架,通过粗粒度初始化、迭代优化和离线验证三阶段构建高质量多轮对话,有效提升LLM在工具辅助场景下的数据生成能力。

arXiv:2508.12685v1 Announce Type: cross Abstract: Agentic task-solving with Large Language Models (LLMs) requires multi-turn, multi-step interactions, often involving complex function calls and dynamic user-agent exchanges. Existing simulation-based data generation methods for such scenarios rely heavily on costly autoregressive interactions between multiple LLM agents, thereby limiting real-world performance of agentic tasks. In this paper, we propose a novel Non-Autoregressive Iterative Generation framework, called ToolACE-MT, for constructing high-quality multi-turn agentic dialogues. ToolACE-MT generates full conversational trajectories through three stages: coarse-grained initialization, iterative refinement, and offline verification. The initialization phase builds a structurally complete yet semantically coarse dialogue skeleton; the iterative refinement phase introduces realistic complexities and continued refinement via mask-and-fill operations; and the offline verification phase ensures correctness and coherence via rule- and model-based checks. Experiments demonstrate that ToolACE-MT enables efficient, effective and generalizable agentic data generation, offering a new paradigm for high-quality data construction in tool-augmented LLM scenarios.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 多轮对话 数据生成 ToolACE-MT 语言模型
相关文章