arXiv:2508.12897v1 Announce Type: new Abstract: Large Reasoning Models (LRMs) have demonstrated impressive performance across various tasks due to their powerful reasoning capabilities. However, their safety performance remains a significant concern. In this paper, we explore the reasons behind the vulnerability of LRMs. Based on this, we propose a novel method to improve the safety of LLMs without sacrificing their reasoning capability. Specifically, we exploit the competition between LRM's reasoning ability and safety ability, and achieve jailbreak by improving LRM's reasoning performance to reduce its safety performance. We then introduce an alignment strategy based on Fuzzification to balance Safety-Reasoning (FuSaR), by detoxifying the harmful reasoning process, where both the dangerous entities and the dangerous procedures in the reasoning steps are hidden. FuSaR successfully mitigates safety risks while preserving core reasoning information. We validate this strategy through alignment experiments on several open-source LRMs using detoxified reasoning data. The results compared with existing baselines conclusively show that FuSaR is an efficient alignment strategy to simultaneously enhance both the reasoning capability and safety of LRMs.