cs.AI updates on arXiv.org 13小时前
Reliability, Embeddedness, and Agency: A Utility-Driven Mathematical Framework for Agent-Centric AI Adoption
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了三个AI系统采纳设计原则,并构建了采纳模型,通过多种验证方法确保模型准确性。

arXiv:2508.12896v1 Announce Type: new Abstract: We formalize three design axioms for sustained adoption of agent-centric AI systems executing multi-step tasks: (A1) Reliability > Novelty; (A2) Embed > Destination; (A3) Agency > Chat. We model adoption as a sum of a decaying novelty term and a growing utility term and derive the phase conditions for troughs/overshoots with full proofs. We introduce: (i) an identifiability/confounding analysis for $(\alpha,\beta,N0,U{\max})$ with delta-method gradients; (ii) a non-monotone comparator (logistic-with-transient-bump) evaluated on the same series to provide additional model comparison; (iii) ablations over hazard families $h(\cdot)$ mapping $\Delta V \to \beta$; (iv) a multi-series benchmark (varying trough depth, noise, AR structure) reporting coverage (type-I error, power); (v) calibration of friction proxies against time-motion/survey ground truth with standard errors; (vi) residual analyses (autocorrelation and heteroskedasticity) for each fitted curve; (vii) preregistered windowing choices for pre/post estimation; (viii) Fisher information & CRLB for $(\alpha,\beta)$ under common error models; (ix) microfoundations linking $\mathcal{T}$ to $(N0,U{\max})$; (x) explicit comparison to bi-logistic, double-exponential, and mixture models; and (xi) threshold sensitivity to $C_f$ heterogeneity. Figures and tables are reflowed for readability, and the bibliography restores and extends non-logistic/Bass adoption references (Gompertz, Richards, Fisher-Pry, Mansfield, Griliches, Geroski, Peres). All code and logs necessary to reproduce the synthetic analyses are embedded as LaTeX listings.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI系统 采纳设计 模型验证
相关文章