cs.AI updates on arXiv.org 13小时前
GridCodex: A RAG-Driven AI Framework for Power Grid Code Reasoning and Compliance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了GridCodex,一个利用大型语言模型和检索增强生成(RAG)的电网代码推理与合规框架,通过多阶段查询优化和RAPTOR增强检索,有效提升了电网代码理解与合规性,实验结果表明,答案质量提升26.4%,召回率提高10倍。

arXiv:2508.12682v1 Announce Type: new Abstract: The global shift towards renewable energy presents unprecedented challenges for the electricity industry, making regulatory reasoning and compliance increasingly vital. Grid codes, the regulations governing grid operations, are complex and often lack automated interpretation solutions, which hinders industry expansion and undermines profitability for electricity companies. We introduce GridCodex, an end to end framework for grid code reasoning and compliance that leverages large language models and retrieval-augmented generation (RAG). Our framework advances conventional RAG workflows through multi stage query refinement and enhanced retrieval with RAPTOR. We validate the effectiveness of GridCodex with comprehensive benchmarks, including automated answer assessment across multiple dimensions and regulatory agencies. Experimental results showcase a 26.4% improvement in answer quality and more than a 10 fold increase in recall rate. An ablation study further examines the impact of base model selection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

电网代码 合规性 大型语言模型 RAG 电网操作
相关文章