cs.AI updates on arXiv.org 13小时前
LARC: Towards Human-level Constrained Retrosynthesis Planning through an Agentic Framework
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为LARC的基于大型语言模型的逆合成规划框架,通过工具推理进行约束评估,有效辅助化学领域的合成路线规划,实现高成功率与效率。

arXiv:2508.11860v1 Announce Type: new Abstract: Large language model (LLM) agent evaluators leverage specialized tools to ground the rational decision-making of LLMs, making them well-suited to aid in scientific discoveries, such as constrained retrosynthesis planning. Constrained retrosynthesis planning is an essential, yet challenging, process within chemistry for identifying synthetic routes from commercially available starting materials to desired target molecules, subject to practical constraints. Here, we present LARC, the first LLM-based Agentic framework for Retrosynthesis planning under Constraints. LARC incorporates agentic constraint evaluation, through an Agent-as-a-Judge, directly into the retrosynthesis planning process, using agentic feedback grounded in tool-based reasoning to guide and constrain route generation. We rigorously evaluate LARC on a carefully curated set of 48 constrained retrosynthesis planning tasks across 3 constraint types. LARC achieves a 72.9% success rate on these tasks, vastly outperforming LLM baselines and approaching human expert-level success in substantially less time. The LARC framework is extensible, and serves as a first step towards an effective agentic tool or a co-scientist to human experts for constrained retrosynthesis.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 逆合成规划 化学研究
相关文章