MarkTechPost@AI 前天 14:17
Meet DeepFleet: Amazon’s New AI Models Suite that can Predict Future Traffic Patterns for Fleets of Mobile Robots
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

亚马逊已在全球运营中心部署了第一百万台机器人,成为全球最大的工业移动机器人运营商。为进一步提升机器人车队间的协调效率,亚马逊推出了名为DeepFleet的创新性基础模型套件。该套件基于数十亿小时的真实运营数据进行训练,能够优化机器人移动、缓解交通拥堵,预计可将整体效率提升高达10%。DeepFleet的出现标志着基础模型在机器人领域的应用,通过预测机器人轨迹和交互,实现前瞻性规划,有效解决大规模机器人协同中遇到的挑战,为物流自动化注入了新的活力。

🤖 **基础模型赋能机器人协同:** 亚马逊将人工智能领域流行的基础模型概念引入机器人技术,通过海量真实运营数据训练,使机器人能够学习通用模式并适应复杂的仓库环境。DeepFleet利用这种预测性智能,旨在解决数万台机器人协同工作时可能出现的交通拥堵和死锁问题,优化机器人路径规划和调度,从而提高整体运营效率。

🚀 **DeepFleet的四种架构模型:** DeepFleet包含四种不同的模型架构,以适应多机器人动态的建模需求。其中包括专注于个体机器人预测的Robot-Centric(RC)模型,以及Robot-Floor(RF)模型,它通过交叉注意力整合机器人状态与全局楼层特征。此外,Image-Floor(IF)模型尝试将仓库视为多通道图像处理,而Graph-Floor(GF)模型则利用图神经网络与Transformer结合,高效处理全局关系,这些模型在时间(同步/事件驱动)和空间(局部/全局)处理方式上各有侧重,为大规模预测提供了多样化测试。

📊 **性能与可扩展性验证:** 通过动态时间规整(DTW)和拥堵延迟误差(CDE)等指标的评估,RC模型在预测精度和运营真实性方面表现出色。GF模型则在较低的计算复杂度下取得了竞争力强的成果。可扩展性实验表明,更大的模型和数据集能有效降低预测损失,与其它基础模型趋势一致,预示着通过增加参数量和训练数据,有望进一步提升性能。

🌍 **实际运营影响与员工发展:** DeepFleet已开始应用于亚马逊全球超过300个设施,包括近期在日本的部署,通过提高机器人行程效率,加快包裹处理速度并降低成本,直接惠及消费者。同时,亚马逊也注重员工技能提升,已为超过70万名员工提供了机器人和AI相关技能培训,通过机器承担重体力劳动,创造更安全的工作环境。

Amazon has reached a remarkable milestone by deploying its one-millionth robot across global fulfillment and sortation centers, solidifying its position as the world’s largest operator of industrial mobile robotics. This achievement coincides with the launch of DeepFleet, a groundbreaking suite of foundation models designed to enhance coordination among vast fleets of mobile robots. Trained on billions of hours of real-world operational data, these models promise to optimize robot movements, reduce congestion, and boost overall efficiency by up to 10%.

The Rise of Foundation Models in Robotics

Foundation models, popularized in language and vision AI, rely on massive datasets to learn general patterns that can be adapted to various tasks. Amazon is applying this approach to robotics, where coordinating thousands of robots in dynamic warehouse environments demands predictive intelligence beyond traditional simulations.

In fulfillment centers, robots transport inventory shelves to human workers, while in sortation facilities, they handle packages for delivery. With fleets numbering in the hundreds of thousands, challenges like traffic jams and deadlocks can slow operations. DeepFleet addresses these by forecasting robot trajectories and interactions, enabling proactive planning.

The models draw from diverse data across warehouse layouts, robot generations, and operational cycles, capturing emergent behaviors such as congestion waves. This data richness—spanning millions of robot-hours—allows DeepFleet to generalize across scenarios, much like how large language models adapt to new queries.

Exploring the DeepFleet Architectures

DeepFleet comprises four distinct architectures/models, each with unique inductive biases to model multi-robot dynamics:

https://www.amazon.science/blog/amazon-builds-first-foundation-model-for-multirobot-coordination?utm_campaign=amazon-builds-first-foundation-model-for-multirobot-coordination&utm_medium=amazon-fulfillment-technologies-robotics&utm_source=linkedin&utm_content=2025-08-11-amazon-builds-first-foundation-model-for-multirobot-coordination&utm_term=2025-august
https://www.amazon.science/blog/amazon-builds-first-foundation-model-for-multirobot-coordination?utm_campaign=amazon-builds-first-foundation-model-for-multirobot-coordination&utm_medium=amazon-fulfillment-technologies-robotics&utm_source=linkedin&utm_content=2025-08-11-amazon-builds-first-foundation-model-for-multirobot-coordination&utm_term=2025-august
https://www.amazon.science/blog/amazon-builds-first-foundation-model-for-multirobot-coordination?utm_campaign=amazon-builds-first-foundation-model-for-multirobot-coordination&utm_medium=amazon-fulfillment-technologies-robotics&utm_source=linkedin&utm_content=2025-08-11-amazon-builds-first-foundation-model-for-multirobot-coordination&utm_term=2025-august

These designs vary in temporal (synchronous vs. event-based) and spatial (local vs. global) approaches, allowing Amazon to test what best suits large-scale forecasting.

Performance Insights and Scaling Potential

Evaluations on held-out warehouse data used metrics like dynamic time warping (DTW) for trajectory accuracy and congestion delay error (CDE) for operational realism. The RC model led overall, with DTW scores of 8.68 for position and 0.11% CDE, while GF offered strong results at lower complexity.

Scaling experiments confirmed that larger models and datasets reduce prediction losses, following patterns seen in other foundation models. For GF, extrapolations suggest a 1-billion-parameter version trained on 6.6 million episodes could optimize compute effectively.

This scalability is key, as Amazon’s vast robot fleet provides an unmatched data advantage. Early applications include congestion forecasting and adaptive routing, with potential for task assignment and deadlock prevention.

Real-World Impact on Operations

DeepFleet is already enhancing Amazon’s network, which spans over 300 facilities worldwide, including a recent deployment in Japan. By improving robot travel efficiency, it enables faster package processing and lower costs, directly benefiting customers.

Beyond efficiency, Amazon emphasizes workforce development, having upskilled over 700,000 employees since 2019 in robotics and AI-related roles. This integration creates safer jobs by offloading heavy tasks to machines.

Looking Ahead

As Amazon continues refining DeepFleet—focusing on RC, RF, and GF variants—the technology could redefine multi-robot systems in logistics. By leveraging AI to anticipate fleet behaviors, it moves beyond reactive control, paving the way for more autonomous, scalable operations. This innovation underscores how foundation models are extending from digital realms into physical automation, potentially transforming industries reliant on coordinated robotics.


Check out the Paper and Technical Blog. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Meet DeepFleet: Amazon’s New AI Models Suite that can Predict Future Traffic Patterns for Fleets of Mobile Robots appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

亚马逊 机器人 DeepFleet 基础模型 物流自动化
相关文章