MarkTechPost@AI 10小时前
NVIDIA AI Introduces End-to-End AI Stack, Cosmos Physical AI Models and New Omniverse Libraries for Advanced Robotics
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

英伟达在SIGGRAPH 2025上发布了Cosmos世界模型、仿真库和基础设施,旨在加速机器人、自动驾驶汽车和工业应用的物理AI。核心是Cosmos Reason,一个70亿参数的视觉-语言模型,具备记忆和物理感知能力,能进行逐步规划。Cosmos Transfer-2模型能加速合成数据集生成,为强化学习提供支持。此外,Omniverse平台更新了神经重建库,并与OpenUSD和CARLA仿真器集成,提供更逼真的虚拟世界训练环境。RTX Pro Blackwell服务器和DGX Cloud则为机器人工作流提供强大基础设施。亚马逊、Uber等行业巨头已开始试点这些技术。

✨ **Cosmos Reason:物理AI的智能规划核心** Cosmos Reason是一款70亿参数的视觉-语言模型,专为机器人和具身智能体设计,能够理解物理定律并具备先进的记忆能力,使其能够进行复杂环境下的逐步行动规划,这对于数据整理、机器人规划和视频分析至关重要。

🚀 **Cosmos Transfer-2:加速合成数据生成** 该模型能够显著加快从3D仿真场景或空间控制输入生成合成数据集的速度,大幅降低了生成逼真机器人训练数据的成本和时间,特别适用于需要大规模模拟各种边缘情况、光照和天气条件的强化学习和策略模型验证。

🌐 **Omniverse平台升级:构建逼真虚拟世界** 英伟达的Omniverse平台通过神经重建库、与OpenUSD和CARLA仿真器的集成,以及SimReady Materials Library,极大地提升了创建高度逼真虚拟环境的能力,为机器人训练和仿真提供了更精细的视觉保真度。

💻 **强大的基础设施支持** RTX Pro Blackwell服务器专为机器人开发工作负载设计,提供仿真、训练和推理任务的统一架构。DGX Cloud则支持基于云的管理和扩展,使团队能够远程开发、训练和部署AI代理,为复杂的AI工作流提供可扩展的计算资源。

🤝 **行业广泛采纳与开放创新** 亚马逊、Agility Robotics、Figure AI、Uber、波士顿动力等众多行业领导者已开始试点Cosmos模型和Omniverse工具,用于生成训练数据、构建数字孪生,并加速机器人技术在制造、交通和物流领域的部署,Cosmos模型也以宽松的许可协议支持研究和商业用途。

Nvidia made major waves at SIGGRAPH 2025 by unveiling a suite of new Cosmos world models, robust simulation libraries, and cutting-edge infrastructure—all designed to accelerate the next era of physical AI for robotics, autonomous vehicles, and industrial applications. Let’s break down the technological details, what this means for developers, and why it matters to the future of embodied intelligence and simulation.

Cosmos World Foundation Models: Reasoning for Robots

Cosmos Reason: Vision-Language Model for Physical AI

At the heart of the announcement is Cosmos Reason, a 7-billion-parameter reasoning vision-language model. This AI is engineered for robots and embodied agents tackling real-world tasks:

Cosmos Transfer Models: Turbocharging Synthetic Data Generation

Practical Impact

The Cosmos WFM family spans three categories (Nano, Super, Ultra), ranging from 4 billion to 14 billion parameters, and can be fine-tuned for varied latency, fidelity, and use cases from real-time streaming to photorealistic rendering.

Simulation and Rendering Libraries: Creating Virtual Worlds for Training

Nvidia’s Omniverse platform gets a major update, adding:

Isaac Sim 5.0.0: Nvidia’s simulation engine now includes enhanced actuator models, broader Python and ROS support, and new neural rendering for better synthetic data.

Infrastructure for Robotics Workflows

Industry Adoption and Open Innovation

Industry leaders—including Amazon Devices, Agility Robotics, Figure AI, Uber, Boston Dynamics, and more—are already piloting Cosmos models and Omniverse tools to generate training data, build digital twins, and accelerate the deployment of robotics in manufacturing, transportation, and logistics.

Cosmos models are broadly available through Nvidia’s API and developer catalogs, with a permissive license supporting both research and commercial usage.

A New Era for Physical AI

Nvidia’s vision is clear: physical AI is a full-stack challenge, demanding smarter models, richer simulation, and scalable infrastructure. With the Cosmos model suite, Omniverse libraries, and Blackwell-powered servers, Nvidia is closing the gap between virtual training and real-world deployment—reducing costly trial-and-error and unlocking new levels of autonomy for robots and intelligent agents.


Check out the technical article from NVIDIA blog. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post NVIDIA AI Introduces End-to-End AI Stack, Cosmos Physical AI Models and New Omniverse Libraries for Advanced Robotics appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Nvidia AI 机器人 物理AI Omniverse
相关文章