arXiv:2503.01290v2 Announce Type: replace-cross Abstract: Predicting the distribution of outcomes under hypothetical interventions is crucial across healthcare, economics, and policy-making. However, existing methods often require restrictive assumptions, and are typically limited by the lack of amortization across problem instances. We propose ACTIVA, a transformer-based conditional variational autoencoder (VAE) architecture for amortized causal inference, which estimates interventional distributions directly from observational data without. ACTIVA learns a latent representation conditioned on observational inputs and intervention queries, enabling zero-shot inference by amortizing causal knowledge from diverse training scenarios. We provide theoretical insights showing that ACTIVA predicts interventional distributions as mixtures over observationally equivalent causal models. Empirical evaluations on synthetic and semi-synthetic datasets confirm the effectiveness of our amortized approach and highlight promising directions for future real-world applications.