cs.AI updates on arXiv.org 前天 12:08
ACTIVA: Amortized Causal Effect Estimation via Transformer-based Variational Autoencoder
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为ACTIVA的基于Transformer的条件变分自动编码器架构,用于因果推理,可从观察数据直接估计干预分布,并展示了其在合成和半合成数据集上的有效性。

arXiv:2503.01290v2 Announce Type: replace-cross Abstract: Predicting the distribution of outcomes under hypothetical interventions is crucial across healthcare, economics, and policy-making. However, existing methods often require restrictive assumptions, and are typically limited by the lack of amortization across problem instances. We propose ACTIVA, a transformer-based conditional variational autoencoder (VAE) architecture for amortized causal inference, which estimates interventional distributions directly from observational data without. ACTIVA learns a latent representation conditioned on observational inputs and intervention queries, enabling zero-shot inference by amortizing causal knowledge from diverse training scenarios. We provide theoretical insights showing that ACTIVA predicts interventional distributions as mixtures over observationally equivalent causal models. Empirical evaluations on synthetic and semi-synthetic datasets confirm the effectiveness of our amortized approach and highlight promising directions for future real-world applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

因果推理 Transformer 变分自动编码器 ACTIVA 数据集
相关文章