cs.AI updates on arXiv.org 08月11日 12:08
Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SE-VAE的新架构,旨在从表格数据中学习可解释的潜在表示。该架构将测量结构直接嵌入到变分自动编码器的设计中,并通过模块化架构实现解耦,表现出色。

arXiv:2508.06347v1 Announce Type: cross Abstract: Learning interpretable latent representations from tabular data remains a challenge in deep generative modeling. We introduce SE-VAE (Structural Equation-Variational Autoencoder), a novel architecture that embeds measurement structure directly into the design of a variational autoencoder. Inspired by structural equation modeling, SE-VAE aligns latent subspaces with known indicator groupings and introduces a global nuisance latent to isolate construct-specific confounding variation. This modular architecture enables disentanglement through design rather than through statistical regularizers alone. We evaluate SE-VAE on a suite of simulated tabular datasets and benchmark its performance against a series of leading baselines using standard disentanglement metrics. SE-VAE consistently outperforms alternatives in factor recovery, interpretability, and robustness to nuisance variation. Ablation results reveal that architectural structure, rather than regularization strength, is the key driver of performance. SE-VAE offers a principled framework for white-box generative modeling in scientific and social domains where latent constructs are theory-driven and measurement validity is essential.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

SE-VAE 深度生成模型 可解释性 变分自动编码器
相关文章