MarkTechPost@AI 21小时前
9 Agentic AI Workflow Patterns Transforming AI Agents in 2025
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章探讨了传统AI智能体工作流的局限性,并提出了9种适用于2025年的智能体工作流模式,包括顺序智能、并行处理、智能路由和自改进系统。这些模式通过模块化协调,将孤立的AI调用转化为自主、自适应、自学习的智能体系统,显著提升了AI在复杂问题解决、可扩展性和灵活性方面的能力。文章强调了模块化设计、工具集成和反馈循环在实际应用中的重要性,预示着AI智能体工作流将成为企业级自动化和未来AI发展的核心。

💡 **顺序智能(Sequential Intelligence)**:包括提示链(Prompt Chaining)和计划执行(Plan and Execute)模式。提示链将复杂任务分解为一系列子目标,前一个LLM的输出作为后一个的输入,适用于需要上下文保持的多轮对话场景。计划执行则允许智能体自主规划、顺序执行、审查结果并进行调整,形成“计划-执行-检查-行动”的闭环,适用于业务流程自动化和数据编排。

🚀 **并行处理(Parallel Processing)**:包含并行化(Parallelization)和协调者-工作者(Orchestrator–Worker)模式。并行化将大任务拆分为可并发执行的子任务,可显著缩短处理时间并提高准确性,适用于代码审查、候选人评估等场景。协调者-工作者模式由一个中央协调者分配任务给专业工作者,并整合结果,适用于检索增强生成(RAG)、编码智能体和多模态研究。

🛣️ **智能路由(Intelligent Routing)**:涵盖路由(Routing)和评估者-优化器(Evaluator–Optimizer)模式。路由模式根据输入分类将任务分配给专门的智能体,实现关注点分离和动态任务分配,是多领域客服和辩论系统的基础。评估者-优化器模式则通过一个生成解决方案,另一个评估并提出改进建议的循环,实现实时数据监控和反馈驱动的设计。

🔄 **自改进系统(Self-Improving Systems)**:包括反思(Reflection)、Rewoo和自主工作流(Autonomous Workflow)模式。反思模式让智能体在每次运行后自我审查并从错误中学习,实现动态学习。Rewoo是ReACT的扩展,允许智能体规划、替换策略和压缩工作流逻辑,以减少计算开销。自主工作流模式则让智能体利用工具反馈和环境信号持续自我改进,实现无需干预的可靠运行。

🌐 **AI智能体工作流的革命性影响**:这些模式将分散的AI调用整合为智能、上下文感知、协同工作的智能体系统,能够解决单一LLM无法处理的复杂问题。通过每个步骤的学习和反馈,智能体工作流能够不断进化,实现真正的自主和自适应。此外,模块化的设计也使得智能体能够根据需求进行专业化、添加或替换,从而实现从简单自动化到企业级编排的灵活扩展。

AI agents are at a pivotal moment: simply calling a language model is no longer enough for production-ready solutions. In 2025, intelligent automation depends on orchestrated, agentic workflows—modular coordination blueprints that transform isolated AI calls into systems of autonomous, adaptive, and self-improving agents. Here’s how nine workflow patterns can unlock the next generation of scalable, robust AI agents.

Why Classic AI Agent Workflows Fail

Most failed agent implementations rely on “single-step thinking”—expecting one model call to solve complex, multi-part problems. AI agents succeed when their intelligence is orchestrated across multi-step, parallel, routed, and self-improving workflows. According to Gartner, by 2028, at least 33% of enterprise software will depend on agentic AI, but overcoming the 85% failure rate requires these new paradigms.

The 9 Agentic Workflow Patterns for 2025

Sequential Intelligence

(1) Prompt Chaining:

Tasks are decomposed into step-by-step subgoals where each LLM’s output becomes the next step’s input. Ideal for complex customer support agents, assistants, and pipelines that require context preservation throughout multi-turn conversations.

(2) Plan and Execute:

Agents autonomously plan multi-step workflows, execute each stage sequentially, review outcomes, and adjust as needed. This adaptive “plan–do–check–act” loop is vital for business process automation and data orchestration, providing resilience against failures and offering granular control over progress.

Parallel Processing

(3) Parallelization:

Splitting a large task into independent sub-tasks for concurrent execution by multiple agents or LLMs. Popular for code review, candidate evaluation, A/B testing, and building guardrails, parallelization drastically reduces time to resolution and improves consensus accuracy.

(4) Orchestrator–Worker:

A central “orchestrator” agent breaks tasks down, assigns work to specialized “workers,” then synthesizes results. This pattern powers retrieval-augmented generation (RAG), coding agents, and sophisticated multi-modal research by leveraging specialization.

Intelligent Routing

(5) Routing:

Input classification decides which specialized agent should handle each part of a workflow, achieving separation of concerns and dynamic task assignment. This is the backbone of multi-domain customer support and debate systems, where routing enables scalable expertise.

(6) Evaluator–Optimizer:

Agents collaborate in a continuous loop: one generates solutions, the other evaluates and suggests improvements. This enables real-time data monitoring, iterative coding, and feedback-driven design—improving quality with every cycle.

Self-Improving Systems

(7) Reflection:

Agents self-review their performance after each run, learning from errors, feedback, and changing requirements. Reflection elevates agents from static performers to dynamic learners, essential for long-term automation in data-centric environments, such as app building or regulatory compliance.

(8) Rewoo:

Extensions of ReACT allow agents to plan, substitute strategies, and compress workflow logic—reducing computational overhead and aiding fine-tuning, especially in deep search and multi-step Q&A domains.

(9) Autonomous Workflow:

Agents continuously operate in loops, leveraging tool feedback and environmental signals for perpetual self-improvement. This is at the heart of autonomous evaluations and dynamic guardrail systems, allowing agents to operate reliably with minimal intervention.

How These Patterns Revolutionize AI Agents

Real-World Impact & Implementation Best Practices

Conclusion

Agentic workflows are no longer a future concept—they are the cornerstone of today’s leading AI teams. By mastering these nine patterns, developers and architects can unlock scalable, resilient, and adaptive AI systems that thrive in real-world production. The shift from single-step execution to orchestrated intelligence marks the dawn of enterprise-wide automation, making agentic thinking a required skill for the age of autonomous AI.


Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post 9 Agentic AI Workflow Patterns Transforming AI Agents in 2025 appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI智能体 工作流模式 人工智能 自动化 顺序智能
相关文章