MarkTechPost@AI 15小时前
Building an Advanced PaperQA2 Research Agent with Google Gemini for Scientific Literature Analysis
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本教程指导用户在 Google Colab 中搭建一个基于 Google Gemini 的 PaperQA2 AI Agent,专门用于科学文献分析。通过配置 Gemini API 并与 PaperQA2 集成,用户可以处理和查询多篇研究论文。最终,用户将拥有一个能够回答复杂问题、进行多问题分析以及跨论文进行比较研究的智能代理,并附带清晰的来源证据。教程详细介绍了环境设置、库安装、模型配置以及代理的功能演示,包括基础问答、多问题分析和研究比较。

📚 **环境搭建与配置**:教程详细介绍了如何在 Google Colab 中安装 PaperQA2、Google Generative AI SDK 等必要库,并指导用户配置 Gemini API Key,为后续的文献分析奠定基础。

📄 **论文下载与模型设置**:演示了如何下载经典的 AI/ML 研究论文(如 Transformer、BERT、GPT3),并创建优化的 PaperQA2 设置,指定使用 Gemini 模型进行 LLM 和嵌入任务,同时调整了搜索数量、证据检索和解析等关键参数。

🧠 **PaperQA Agent 功能实现**:通过定义 `PaperQAAgent` 类,实现了使用 Gemini 驱动的 PaperQA2 进行文献搜索、问题回答及来源引用。提供了 `ask_question`、`display_answer`、`multi_question_analysis` 和 `comparative_analysis` 等方法,支持单问题、多问题和对比分析。

💡 **演示与交互**:通过 `basic_demo`、`advanced_demo` 和 `research_comparison_demo` 函数,展示了 PaperQA2 Agent 在不同场景下的应用效果,并提供了一个交互式查询助手,允许用户随时提出自定义问题并查看来源,极大地增强了用户与研究文献的互动性。

🛠️ **实用工具与优化建议**:教程还提供了实用的使用技巧,如问题构建、模型参数调整、文档管理和性能优化建议,并实现了将分析结果保存到文件的功能,帮助用户更高效地利用 AI 进行学术研究。

In this tutorial, we walk through building an advanced PaperQA2 AI Agent powered by Google’s Gemini model, designed specifically for scientific literature analysis. We set up the environment in Google Colab/Notebook, configure the Gemini API, and integrate it seamlessly with PaperQA2 to process and query multiple research papers. By the end of the setup, we have an intelligent agent capable of answering complex questions, performing multi-question analyses, and conducting comparative research across papers, all while providing clear answers with evidence from source documents. Check out the Full Codes here.

!pip install paper-qa>=5 google-generativeai requests pypdf2 -qimport osimport asyncioimport tempfileimport requestsfrom pathlib import Pathfrom paperqa import Settings, ask, agent_queryfrom paperqa.settings import AgentSettingsimport google.generativeai as genaiGEMINI_API_KEY = "Use Your Own API Key Here"os.environ["GEMINI_API_KEY"] = GEMINI_API_KEYgenai.configure(api_key=GEMINI_API_KEY)print(" Gemini API key configured successfully!")

We begin by installing the required libraries, including PaperQA2 and Google’s Generative AI SDK, and then import the necessary modules for our project. We set our Gemini API key as an environment variable and configure it, ensuring the integration is ready for use. Check out the Full Codes here.

def download_sample_papers():   """Download sample AI/ML research papers for demonstration"""   papers = {       "attention_is_all_you_need.pdf": "https://arxiv.org/pdf/1706.03762.pdf",       "bert_paper.pdf": "https://arxiv.org/pdf/1810.04805.pdf",       "gpt3_paper.pdf": "https://arxiv.org/pdf/2005.14165.pdf"   }     papers_dir = Path("sample_papers")   papers_dir.mkdir(exist_ok=True)     print(" Downloading sample research papers...")   for filename, url in papers.items():       filepath = papers_dir / filename       if not filepath.exists():           try:               response = requests.get(url, stream=True, timeout=30)               response.raise_for_status()               with open(filepath, 'wb') as f:                   for chunk in response.iter_content(chunk_size=8192):                       f.write(chunk)               print(f" Downloaded: {filename}")           except Exception as e:               print(f" Failed to download {filename}: {e}")       else:           print(f" Already exists: {filename}")     return str(papers_dir)papers_directory = download_sample_papers()def create_gemini_settings(paper_dir: str, temperature: float = 0.1):   """Create optimized settings for PaperQA2 with Gemini models"""     return Settings(       llm="gemini/gemini-1.5-flash",       summary_llm="gemini/gemini-1.5-flash",             agent=AgentSettings(           agent_llm="gemini/gemini-1.5-flash",           search_count=6,            timeout=300.0,        ),             embedding="gemini/text-embedding-004",             temperature=temperature,       paper_directory=paper_dir,             answer=dict(           evidence_k=8,                       answer_max_sources=4,                 evidence_summary_length="about 80 words",           answer_length="about 150 words, but can be longer",           max_concurrent_requests=2,       ),             parsing=dict(           chunk_size=4000,           overlap=200,       ),             verbosity=1,   )

We download a set of well-known AI/ML research papers for our analysis and store them in a dedicated folder. We then create optimized PaperQA2 settings configured to use Gemini for all LLM and embedding tasks, fine-tuning parameters like search count, evidence retrieval, and parsing for efficient and accurate literature processing. Check out the Full Codes here.

class PaperQAAgent:   """Advanced AI Agent for scientific literature analysis using PaperQA2"""     def __init__(self, papers_directory: str, temperature: float = 0.1):       self.settings = create_gemini_settings(papers_directory, temperature)       self.papers_dir = papers_directory       print(f" PaperQA Agent initialized with papers from: {papers_directory}")         async def ask_question(self, question: str, use_agent: bool = True):       """Ask a question about the research papers"""       print(f"\n Question: {question}")       print(" Searching through research papers...")             try:           if use_agent:               response = await agent_query(query=question, settings=self.settings)           else:               response = ask(question, settings=self.settings)                         return response                 except Exception as e:           print(f" Error processing question: {e}")           return None     def display_answer(self, response):       """Display the answer with formatting"""       if response is None:           print(" No response received")           return                 print("\n" + "="*60)       print(" ANSWER:")       print("="*60)             answer_text = getattr(response, 'answer', str(response))       print(f"\n{answer_text}")             contexts = getattr(response, 'contexts', getattr(response, 'context', []))       if contexts:           print("\n" + "-"*40)           print(" SOURCES USED:")           print("-"*40)           for i, context in enumerate(contexts[:3], 1):               context_name = getattr(context, 'name', getattr(context, 'doc', f'Source {i}'))               context_text = getattr(context, 'text', getattr(context, 'content', str(context)))               print(f"\n{i}. {context_name}")               print(f"   Text preview: {context_text[:150]}...")     async def multi_question_analysis(self, questions: list):       """Analyze multiple questions in sequence"""       results = {}       for i, question in enumerate(questions, 1):           print(f"\n Processing question {i}/{len(questions)}")           response = await self.ask_question(question)           results = response                     if response:               print(f" Completed: {question[:50]}...")           else:               print(f" Failed: {question[:50]}...")                     return results     async def comparative_analysis(self, topic: str):       """Perform comparative analysis across papers"""       questions = [           f"What are the key innovations in {topic}?",           f"What are the limitations of current {topic} approaches?",           f"What future research directions are suggested for {topic}?",       ]             print(f"\n Starting comparative analysis on: {topic}")       return await self.multi_question_analysis(questions)async def basic_demo():   """Demonstrate basic PaperQA functionality"""   agent = PaperQAAgent(papers_directory)     question = "What is the transformer architecture and why is it important?"   response = await agent.ask_question(question)   agent.display_answer(response)print(" Running basic demonstration...")await basic_demo()async def advanced_demo():   """Demonstrate advanced multi-question analysis"""   agent = PaperQAAgent(papers_directory, temperature=0.2)     questions = [       "How do attention mechanisms work in transformers?",       "What are the computational challenges of large language models?",       "How has pre-training evolved in natural language processing?"   ]     print(" Running advanced multi-question analysis...")   results = await agent.multi_question_analysis(questions)     for question, response in results.items():       print(f"\n{'='*80}")       print(f"Q: {question}")       print('='*80)       if response:           answer_text = getattr(response, 'answer', str(response))           display_text = answer_text[:300] + "..." if len(answer_text) > 300 else answer_text           print(display_text)       else:           print(" No answer available")print("\n Running advanced demonstration...")await advanced_demo()async def research_comparison_demo():   """Demonstrate comparative research analysis"""   agent = PaperQAAgent(papers_directory)     results = await agent.comparative_analysis("attention mechanisms in neural networks")     print("\n" + "="*80)   print(" COMPARATIVE ANALYSIS RESULTS")   print("="*80)     for question, response in results.items():       print(f"\n {question}")       print("-" * 50)       if response:           answer_text = getattr(response, 'answer', str(response))           print(answer_text)       else:           print(" Analysis unavailable")       print()print(" Running comparative research analysis...")await research_comparison_demo()

̌We define a PaperQAAgent that uses our Gemini-tuned PaperQA2 settings to search papers, answer questions, and cite sources with clean display helpers. We then run basic, advanced multi-question, and comparative demos so we can interrogate literature end-to-end and summarize findings efficiently. Check out the Full Codes here.

def create_interactive_agent():   """Create an interactive agent for custom queries"""   agent = PaperQAAgent(papers_directory)     async def query(question: str, show_sources: bool = True):       """Interactive query function"""       response = await agent.ask_question(question)             if response:           answer_text = getattr(response, 'answer', str(response))           print(f"\n Answer:\n{answer_text}")                     if show_sources:               contexts = getattr(response, 'contexts', getattr(response, 'context', []))               if contexts:                   print(f"\n Based on {len(contexts)} sources:")                   for i, ctx in enumerate(contexts[:3], 1):                       ctx_name = getattr(ctx, 'name', getattr(ctx, 'doc', f'Source {i}'))                       print(f"  {i}. {ctx_name}")       else:           print(" Sorry, I couldn't find an answer to that question.")                 return response     return queryinteractive_query = create_interactive_agent()print("\n Interactive agent ready! You can now ask custom questions:")print("Example: await interactive_query('How do transformers handle long sequences?')")def print_usage_tips():   """Print helpful usage tips"""   tips = """    USAGE TIPS FOR PAPERQA2 WITH GEMINI:     1.  Question Formulation:      - Be specific about what you want to know      - Ask about comparisons, mechanisms, or implications      - Use domain-specific terminology     2.  Model Configuration:      - Gemini 1.5 Flash is free and reliable      - Adjust temperature (0.0-1.0) for creativity vs precision      - Use smaller chunk_size for better processing     3.  Document Management:      - Add PDFs to the papers directory      - Use meaningful filenames      - Mix different types of papers for better coverage     4.  Performance Optimization:      - Limit concurrent requests for free tier      - Use smaller evidence_k values for faster responses      - Cache results by saving the agent state     5.  Advanced Usage:      - Chain multiple questions for deeper analysis      - Use comparative analysis for research reviews      - Combine with other tools for complete workflows      Example Questions to Try:   - "Compare the attention mechanisms in BERT vs GPT models"   - "What are the computational bottlenecks in transformer training?"   - "How has pre-training evolved from word2vec to modern LLMs?"   - "What are the key innovations that made transformers successful?"   """   print(tips)print_usage_tips()def save_analysis_results(results: dict, filename: str = "paperqa_analysis.txt"):   """Save analysis results to a file"""   with open(filename, 'w', encoding='utf-8') as f:       f.write("PaperQA2 Analysis Results\n")       f.write("=" * 50 + "\n\n")             for question, response in results.items():           f.write(f"Question: {question}\n")           f.write("-" * 30 + "\n")           if response:               answer_text = getattr(response, 'answer', str(response))               f.write(f"Answer: {answer_text}\n")                             contexts = getattr(response, 'contexts', getattr(response, 'context', []))               if contexts:                   f.write(f"\nSources ({len(contexts)}):\n")                   for i, ctx in enumerate(contexts, 1):                       ctx_name = getattr(ctx, 'name', getattr(ctx, 'doc', f'Source {i}'))                       f.write(f"  {i}. {ctx_name}\n")           else:               f.write("Answer: No response available\n")           f.write("\n" + "="*50 + "\n\n")     print(f" Results saved to: {filename}")print(" Tutorial complete! You now have a fully functional PaperQA2 AI Agent with Gemini.")

We create an interactive query helper that allows us to ask custom questions on demand and optionally view cited sources. We also print practical usage tips and add a saver that writes every Q&A with source names to a results file, wrapping up the tutorial with a ready-to-use workflow.

In conclusion, we successfully created a fully functional AI research assistant that leverages the speed and versatility of Gemini with the robust paper processing capabilities of PaperQA2. We can now interactively explore scientific papers, run targeted queries, and even perform in-depth comparative analyses with minimal effort. This setup enhances our ability to digest complex research and also streamlines the entire literature review process, enabling us to focus on insights rather than manual searching.


Check out the Full Codes here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Building an Advanced PaperQA2 Research Agent with Google Gemini for Scientific Literature Analysis appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PaperQA2 Google Gemini AI Agent 科学文献分析 自然语言处理
相关文章