arXiv:2508.05262v1 Announce Type: cross Abstract: Intraoperative fluorescent cardiac imaging enables quality control following coronary bypass grafting surgery. We can estimate local quantitative indicators, such as cardiac perfusion, by tracking local feature points. However, heart motion and significant fluctuations in image characteristics caused by vessel structural enrichment limit traditional tracking methods. We propose a particle filtering tracker based on cyclicconsistency checks to robustly track particles sampled to follow target landmarks. Our method tracks 117 targets simultaneously at 25.4 fps, allowing real-time estimates during interventions. It achieves a tracking error of (5.00 +/- 0.22 px) and outperforms other deep learning trackers (22.3 +/- 1.1 px) and conventional trackers (58.1 +/- 27.1 px).