cs.AI updates on arXiv.org 6小时前
Robust Tracking with Particle Filtering for Fluorescent Cardiac Imaging
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出一种基于粒子滤波的循环一致性检查追踪方法,用于术中荧光心脏成像,实现高质量冠脉搭桥手术质量控制,提高追踪精度。

arXiv:2508.05262v1 Announce Type: cross Abstract: Intraoperative fluorescent cardiac imaging enables quality control following coronary bypass grafting surgery. We can estimate local quantitative indicators, such as cardiac perfusion, by tracking local feature points. However, heart motion and significant fluctuations in image characteristics caused by vessel structural enrichment limit traditional tracking methods. We propose a particle filtering tracker based on cyclicconsistency checks to robustly track particles sampled to follow target landmarks. Our method tracks 117 targets simultaneously at 25.4 fps, allowing real-time estimates during interventions. It achieves a tracking error of (5.00 +/- 0.22 px) and outperforms other deep learning trackers (22.3 +/- 1.1 px) and conventional trackers (58.1 +/- 27.1 px).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

荧光心脏成像 粒子滤波 冠脉搭桥 追踪技术 实时估计
相关文章