cs.AI updates on arXiv.org 4小时前
Advanced Hybrid Transformer LSTM Technique with Attention and TS Mixer for Drilling Rate of Penetration Prediction
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种结合LSTM、Transformer、TS-Mixer和注意力机制的混合深度学习架构,有效预测钻井渗透率,提高钻井效率。

arXiv:2508.05210v1 Announce Type: cross Abstract: The Rate of Penetration (ROP) is crucial for optimizing drilling operations; however, accurately predicting it is hindered by the complex, dynamic, and high-dimensional nature of drilling data. Traditional empirical, physics-based, and basic machine learning models often fail to capture intricate temporal and contextual relationships, resulting in suboptimal predictions and limited real-time utility. To address this gap, we propose a novel hybrid deep learning architecture integrating Long Short-Term Memory (LSTM) networks, Transformer encoders, Time-Series Mixer (TS-Mixer) blocks, and attention mechanisms to synergistically model temporal dependencies, static feature interactions, global context, and dynamic feature importance. Evaluated on a real-world drilling dataset, our model outperformed benchmarks (standalone LSTM, TS-Mixer, and simpler hybrids) with an R-squared score of 0.9988 and a Mean Absolute Percentage Error of 1.447%, as measured by standard regression metrics (R-squared, MAE, RMSE, MAPE). Model interpretability was ensured using SHAP and LIME, while actual vs. predicted curves and bias checks confirmed accuracy and fairness across scenarios. This advanced hybrid approach enables reliable real-time ROP prediction, paving the way for intelligent, cost-effective drilling optimization systems with significant operational impact.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

深度学习 钻井效率 渗透率预测 LSTM Transformer
相关文章