arXiv:2508.05074v1 Announce Type: cross Abstract: Personalized sequential recommendation aims to predict appropriate items for users based on their behavioral sequences. To alleviate data sparsity and interest drift issues, conventional approaches typically incorporate auxiliary behaviors from other domains via cross-domain transition. However, existing cross-domain sequential recommendation (CDSR) methods often follow an align-then-fusion paradigm that performs representation-level alignment across multiple domains and combines them mechanically for recommendation, overlooking the fine-grained fusion of domain-specific preferences. Inspired by recent advances in diffusion models (DMs) for distribution matching, we propose an align-for-fusion framework for CDSR to harmonize triple preferences via dual-oriented DMs, termed HorizonRec. Specifically, we investigate the uncertainty injection of DMs and identify stochastic noise as a key source of instability in existing DM-based recommenders. To address this, we introduce a mixed-conditioned distribution retrieval strategy that leverages distributions retrieved from users' authentic behavioral logic as semantic bridges across domains, enabling consistent multi-domain preference modeling. Furthermore, we propose a dual-oriented preference diffusion method to suppress potential noise and emphasize target-relevant interests during multi-domain user representation fusion. Extensive experiments on four CDSR datasets from two distinct platforms demonstrate the effectiveness and robustness of HorizonRec in fine-grained triple-domain preference fusion.