arXiv:2409.04224v2 Announce Type: replace Abstract: In healthcare, multi-organ system diseases pose unique and significant challenges as they impact multiple physiological systems concurrently, demanding complex and coordinated treatment strategies. Despite recent advancements in the AI based clinical decision support systems, these solutions only focus on individual organ systems, failing to account for complex interdependencies between them. This narrow focus greatly hinders their effectiveness in recommending holistic and clinically actionable treatments in the real world setting. To address this critical gap, we propose a novel Hierarchical Multi-Agent Reinforcement Learning (HMARL) framework. Our architecture deploys specialized and dedicated agents for each organ system and facilitates inter-agent communication to enable synergistic decision-making across organ systems. Furthermore, we introduce a dual-layer state representation technique that contextualizes patient conditions at both global and organ-specific levels, improving the accuracy and relevance of treatment decisions. We evaluate our HMARL solution on the task of sepsis management, a common and critical multi-organ disease, using both qualitative and quantitative metrics. Our method learns effective, clinically aligned treatment policies that considerably improve patient survival. We believe this framework represents a significant advancement in clinical decision support systems, introducing the first RL solution explicitly designed for multi-organ treatment recommendations. Our solution moves beyond prevailing simplified, single-organ models that fall short in addressing the complexity of multi-organ diseases.