cs.AI updates on arXiv.org 8小时前
Provable Post-Training Quantization: Theoretical Analysis of OPTQ and Qronos
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文首次提出OPTQ算法及其变体的量化误差界限,为该算法的优化设计提供理论依据。

arXiv:2508.04853v1 Announce Type: cross Abstract: Post-training quantization (PTQ) has become a crucial tool for reducing the memory and compute costs of modern deep neural networks, including large language models (LLMs). Among PTQ algorithms, the OPTQ framework-also known as GPTQ-has emerged as a leading method due to its computational efficiency and strong empirical performance. Despite its widespread adoption, however, OPTQ lacks rigorous quantitative theoretical guarantees. This paper presents the first quantitative error bounds for both deterministic and stochastic variants of OPTQ, as well as for Qronos, a recent related state-of-the-art PTQ algorithm. We analyze how OPTQ's iterative procedure induces quantization error and derive non-asymptotic 2-norm error bounds that depend explicitly on the calibration data and a regularization parameter that OPTQ uses. Our analysis provides theoretical justification for several practical design choices, including the widely used heuristic of ordering features by decreasing norm, as well as guidance for selecting the regularization parameter. For the stochastic variant, we establish stronger infinity-norm error bounds, which enable control over the required quantization alphabet and are particularly useful for downstream layers and nonlinearities. Finally, we extend our analysis to Qronos, providing new theoretical bounds, for both its deterministic and stochastic variants, that help explain its empirical advantages.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OPTQ算法 量化误差 理论界限 深度学习 神经网络
相关文章