cs.AI updates on arXiv.org 4小时前
Medal Matters: Probing LLMs' Failure Cases Through Olympic Rankings
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

研究通过奥运奖牌数据,评估大型语言模型在获取奖牌数和排名识别上的能力,揭示其知识组织与人类推理的差异,并提出改进方向。

arXiv:2409.06518v2 Announce Type: replace-cross Abstract: Large language models (LLMs) have achieved remarkable success in natural language processing tasks, yet their internal knowledge structures remain poorly understood. This study examines these structures through the lens of historical Olympic medal tallies, evaluating LLMs on two tasks: (1) retrieving medal counts for specific teams and (2) identifying rankings of each team. While state-of-the-art LLMs excel in recalling medal counts, they struggle with providing rankings, highlighting a key difference between their knowledge organization and human reasoning. These findings shed light on the limitations of LLMs' internal knowledge integration and suggest directions for improvement. To facilitate further research, we release our code, dataset, and model outputs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

大型语言模型 知识结构 奥运奖牌 自然语言处理 模型评估
相关文章