arXiv:2508.04816v1 Announce Type: cross Abstract: Numerous self-supervised learning paradigms, such as contrastive learning and masked image modeling, learn powerful representations from unlabeled data but are typically pretrained in isolation, overlooking complementary insights and yielding large models that are impractical for resource-constrained deployment. To overcome these challenges, we introduce Consensus-oriented Masked Distillation (CoMAD), a lightweight, parameter-free framework that unifies knowledge from multiple current state-of-the-art self-supervised Vision Transformers into a compact student network. CoMAD distills from three pretrained ViT-Base teachers, MAE, MoCo v3, and iBOT, each offering distinct semantic and contextual priors. Rather than naively averaging teacher outputs, we apply asymmetric masking: the student sees only 25 percent of patches while each teacher receives a progressively lighter, unique mask, forcing the student to interpolate missing features under richer contexts. Teacher embeddings are aligned to the student's space via a linear adapter and layer normalization, then fused through our joint consensus gating, which weights each token by combining cosine affinity with inter-teacher agreement. The student is trained with dual-level KL divergence on visible tokens and reconstructed feature maps, capturing both local and global structure. On ImageNet-1K, CoMAD's ViT-Tiny achieves 75.4 percent Top-1, an increment of 0.4 percent over the previous state-of-the-art. In dense-prediction transfers, it attains 47.3 percent mIoU on ADE20K, and 44.5 percent box average precision and 40.5 percent mask average precision on MS-COCO, establishing a new state-of-the-art in compact SSL distillation.