cs.AI updates on arXiv.org 6小时前
AI Should Be More Human, Not More Complex
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比五大AI搜索系统,发现用户更偏好简洁、有来源的回应,而非复杂解释。研究表明,过于复杂的AI回应导致认知负荷增加,降低信任度,并揭示简洁、透明的人工智能沟通模式对用户参与度和系统可靠性至关重要。

arXiv:2508.04713v1 Announce Type: cross Abstract: Large Language Models (LLMs) in search applications increasingly prioritize verbose, lexically complex responses that paradoxically reduce user satisfaction and engagement. Through a comprehensive study of 10.000 (est.) participants comparing responses from five major AI-powered search systems, we demonstrate that users overwhelmingly prefer concise, source-attributed responses over elaborate explanations. Our analysis reveals that current AI development trends toward "artificial sophistication" create an uncanny valley effect where systems sound knowledgeable but lack genuine critical thinking, leading to reduced trust and increased cognitive load. We present evidence that optimal AI communication mirrors effective human discourse: direct, properly sourced, and honest about limitations. Our findings challenge the prevailing assumption that more complex AI responses indicate better performance, instead suggesting that human-like brevity and transparency are key to user engagement and system reliability.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI搜索 用户偏好 AI回应
相关文章