cs.AI updates on arXiv.org 12小时前
Large Language Models Transform Organic Synthesis From Reaction Prediction to Automation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了大型语言模型(LLMs)在有机合成中的应用,如何通过耦合图神经网络、量子计算和实时光谱学,缩短发现周期,支持绿色、数据驱动的化学,并提出了社区倡议和开源基准等,以实现人工智能和自动化驱动的快速、可靠和包容的分子创新。

arXiv:2508.05427v1 Announce Type: new Abstract: Large language models (LLMs) are beginning to reshape how chemists plan and run reactions in organic synthesis. Trained on millions of reported transformations, these text-based models can propose synthetic routes, forecast reaction outcomes and even instruct robots that execute experiments without human supervision. Here we survey the milestones that turned LLMs from speculative tools into practical lab partners. We show how coupling LLMs with graph neural networks, quantum calculations and real-time spectroscopy shrinks discovery cycles and supports greener, data-driven chemistry. We discuss limitations, including biased datasets, opaque reasoning and the need for safety gates that prevent unintentional hazards. Finally, we outline community initiatives open benchmarks, federated learning and explainable interfaces that aim to democratize access while keeping humans firmly in control. These advances chart a path towards rapid, reliable and inclusive molecular innovation powered by artificial intelligence and automation.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 有机合成 人工智能 自动化 化学创新
相关文章