arXiv:2508.04011v1 Announce Type: cross Abstract: People frequently use speech-to-text systems to compose short texts with voice. However, current voice-based interfaces struggle to support composing more detailed, contextually complex texts, especially in scenarios where users are on the move and cannot visually track progress. Longer-form communication, such as composing structured emails or thoughtful responses, requires persistent context tracking, structured guidance, and adaptability to evolving user intentions--capabilities that conventional dictation tools and voice assistants do not support. We introduce StepWrite, a large language model-driven voice-based interaction system that augments human writing ability by enabling structured, hands-free and eyes-free composition of longer-form texts while on the move. StepWrite decomposes the writing process into manageable subtasks and sequentially guides users with contextually-aware non-visual audio prompts. StepWrite reduces cognitive load by offloading the context-tracking and adaptive planning tasks to the models. Unlike baseline methods like standard dictation features (e.g., Microsoft Word) and conversational voice assistants (e.g., ChatGPT Advanced Voice Mode), StepWrite dynamically adapts its prompts based on the evolving context and user intent, and provides coherent guidance without compromising user autonomy. An empirical evaluation with 25 participants engaging in mobile or stationary hands-occupied activities demonstrated that StepWrite significantly reduces cognitive load, improves usability and user satisfaction compared to baseline methods. Technical evaluations further confirmed StepWrite's capability in dynamic contextual prompt generation, accurate tone alignment, and effective fact checking. This work highlights the potential of structured, context-aware voice interactions in enhancing hands-free and eye-free communication in everyday multitasking scenarios.