cs.AI updates on arXiv.org 8小时前
Neuromorphic Cybersecurity with Semi-supervised Lifelong Learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于生物神经元的Spiking Neural Network架构,用于终身网络入侵检测系统,通过动态调整网络结构及学习规则,实现新威胁的增量学习,在持续学习环境中展现良好适应性,并在UNSW-NB15数据集上达到85.3%的准确率。

arXiv:2508.04610v1 Announce Type: cross Abstract: Inspired by the brain's hierarchical processing and energy efficiency, this paper presents a Spiking Neural Network (SNN) architecture for lifelong Network Intrusion Detection System (NIDS). The proposed system first employs an efficient static SNN to identify potential intrusions, which then activates an adaptive dynamic SNN responsible for classifying the specific attack type. Mimicking biological adaptation, the dynamic classifier utilizes Grow When Required (GWR)-inspired structural plasticity and a novel Adaptive Spike-Timing-Dependent Plasticity (Ad-STDP) learning rule. These bio-plausible mechanisms enable the network to learn new threats incrementally while preserving existing knowledge. Tested on the UNSW-NB15 benchmark in a continual learning setting, the architecture demonstrates robust adaptation, reduced catastrophic forgetting, and achieves $85.3$\% overall accuracy. Furthermore, simulations using the Intel Lava framework confirm high operational sparsity, highlighting the potential for low-power deployment on neuromorphic hardware.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Spiking Neural Network NIDS 生物启发
相关文章