cs.AI updates on arXiv.org 6小时前
Hallucination to Truth: A Review of Fact-Checking and Factuality Evaluation in Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文系统分析LLMs生成内容的事实准确性评估,探讨幻觉、数据集限制和评估指标可靠性等挑战,强调构建强事实核查框架的必要性。

arXiv:2508.03860v1 Announce Type: cross Abstract: Large Language Models (LLMs) are trained on vast and diverse internet corpora that often include inaccurate or misleading content. Consequently, LLMs can generate misinformation, making robust fact-checking essential. This review systematically analyzes how LLM-generated content is evaluated for factual accuracy by exploring key challenges such as hallucinations, dataset limitations, and the reliability of evaluation metrics. The review emphasizes the need for strong fact-checking frameworks that integrate advanced prompting strategies, domain-specific fine-tuning, and retrieval-augmented generation (RAG) methods. It proposes five research questions that guide the analysis of the recent literature from 2020 to 2025, focusing on evaluation methods and mitigation techniques. The review also discusses the role of instruction tuning, multi-agent reasoning, and external knowledge access via RAG frameworks. Key findings highlight the limitations of current metrics, the value of grounding outputs with validated external evidence, and the importance of domain-specific customization to improve factual consistency. Overall, the review underlines the importance of building LLMs that are not only accurate and explainable but also tailored for domain-specific fact-checking. These insights contribute to the advancement of research toward more trustworthy and context-aware language models.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLMs 事实核查 评估方法 事实一致性
相关文章