cs.AI updates on arXiv.org 12小时前
Benchmarking Quantum and Classical Sequential Models for Urban Telecommunication Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过对比经典和量子激励的序列模型在预测短信活动数据上的表现,分析了不同模型在处理不同输入序列长度时的敏感度,指出量子增强的有效性高度依赖特定任务和架构设计。

arXiv:2508.04488v1 Announce Type: cross Abstract: In this study, we evaluate the performance of classical and quantum-inspired sequential models in forecasting univariate time series of incoming SMS activity (SMS-in) using the Milan Telecommunication Activity Dataset. Due to data completeness limitations, we focus exclusively on the SMS-in signal for each spatial grid cell. We compare five models, LSTM (baseline), Quantum LSTM (QLSTM), Quantum Adaptive Self-Attention (QASA), Quantum Receptance Weighted Key-Value (QRWKV), and Quantum Fast Weight Programmers (QFWP), under varying input sequence lengths (4, 8, 12, 16, 32 and 64). All models are trained to predict the next 10-minute SMS-in value based solely on historical values within a given sequence window. Our findings indicate that different models exhibit varying sensitivities to sequence length, suggesting that quantum enhancements are not universally advantageous. Rather, the effectiveness of quantum modules is highly dependent on the specific task and architectural design, reflecting inherent trade-offs among model size, parameterization strategies, and temporal modeling capabilities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

量子模型 序列预测 短信活动数据 模型性能 量子增强
相关文章