arXiv:2508.04451v1 Announce Type: cross Abstract: Red teaming is critical for identifying vulnerabilities and building trust in current LLMs. However, current automated methods for Large Language Models (LLMs) rely on brittle prompt templates or single-turn attacks, failing to capture the complex, interactive nature of real-world adversarial dialogues. We propose a novel paradigm: training an AI to strategically `break' another AI. By formalizing red teaming as a Markov Decision Process (MDP) and employing a hierarchical Reinforcement Learning (RL) framework, we effectively address the inherent sparse reward and long-horizon challenges. Our generative agent learns coherent, multi-turn attack strategies through a fine-grained, token-level harm reward, enabling it to uncover subtle vulnerabilities missed by existing baselines. This approach sets a new state-of-the-art, fundamentally reframing LLM red teaming as a dynamic, trajectory-based process (rather than a one-step test) essential for robust AI deployment.